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General Introduction

Liquid crystals are now well established in
basic research as well as in development for
applications and commercial use. Because
they represent a state intermediate between
ordinary liquids and three-dimensional sol-
ids, the investigation of their physical prop-
erties is very complex and makes use of
many different tools and techniques. Liquid
crystals play an important role in materials
science, they are model materials for the
organic chemist in order to investigate the
connection between chemical structure and
physical properties, and they provide in-
sight into certain phenomena of biological
systems. Since their main application is in
displays, some knowledge of the particulars
of display technology is necessary for a
complete understanding of the matter.

In 1980 VCH published the Handbook of
Liquid Crystals, written by H. Kelker and
R. Hatz, with a contribution by C. Schu-
mann, which had a total of about 900 pag-
es. Even in 1980 it was no easy task for this
small number of authors to put together the
Handbook, which comprised so many spe-
cialities; the Handbook took about 12 years
to complete. In the meantime the amount of
information about liquid crystals has grown
nearly exponentially. This is reflected in the
number of known liquid-crystalline com-
pounds: in 1974 about 5000 (D. Demus, H.
Demus, H. Zaschke, Fliissige Kristalle in
Tabellen) and in 1997 about 70000 (V. Vill,
electronic data base LIQCRYST). Accord-
ing to a recent estimate by V. Vill, the cur-

rent number of publications is about 65000
papers and patents. This development
shows that, for a single author or a smali
group of authors, it may be impossible to
produce a representative review of all the
topics that are relevant to liquid crystals —
on the one hand because of the necessarily
high degree of specialization, and on the
other because of the factor of time.

Owing to the regrettable early decease of H.
Kelker and the poor health of R. Hatz, nei-
ther of the former main authors was able to
continue their work and to participate in a
new edition of the Handbook. Therefore, it
was decided to appoint five new editors
to be responsible for the structure of the
book and for the selection of specialized
authors for the individual chapters. We are
now happy to be able to present the result
of the work of more than 80 experienced au-
thors from the international scientific com-
munity.

The idea behind the structure of the Hand-
book is to provide in Volume | a basic over-
view of the fundamentals of the science and
applications of the entire field of liquid crys-
tals. This volume should be suitable as an
introduction to liquid crystals for the non-
specialist, as well as a source of current
knowledge about the state-of-the-art for the
specialist. It contains chapters about the his-
torical development, theory, synthesis and
chemical structure, physical properties,
characterization methods, and applications
of all kinds of liquid crystals. Two subse-



XXXVI General Introduction

quent volumes provide more specialized in-
formation.

The two volumes on Low Molecular Weight
Liquid Crystals are divided into parts deal-
ing with calamitic liquid crystals (contain-
ing chapters about phase structures, nemat-
ics, cholesterics, and smectics), discotic lig-
uid crystals, and non-conventional liquid
crystals.

The last volume is devoted to polymeric lig-
uid crystals (with chapters about main-chain
and side-group thermotropic liquid crystal
polymers), amphiphilic liquid crystals, and
natural polymers with liquid-crystalline
properties.

The various chapters of the Handbook have
been written by single authors, sometimes
with one or more coauthors. This provides
the advantage that most of the chapters can
be read alone, without necessarily having
read the preceding chapters. On the other
hand, despite great efforts on the part of the
editors, the chapters are different in style,
and some overlap of several chapters could
not be avoided. This sometimes results
in the discussion of the same topic from

quite different viewpoints by authors
who use quite different methods in their re-
search.

The editors express their gratitude to the au-
thors for their efforts to produce, in a rela-
tively short time, overviews of the topics,
limited in the number of pages, but repre-
sentative in the selection of the material and
up to date in the cited references.

The editors are indebted to the editorial and
production staff of WILEY-VCH for their
constantly good and fruitful cooperation,
beginning with the idea of producing a com-
pletely new edition of the Handbook of Lig-
uid Crystals continuing with support for the
editors in collecting the manuscripts of so
many authors, and finally in transforming a
large number of individual chapters into
well-presented volumes.

In particular we thank Dr. P. Gregory, Dr. U.
Anton, and Dr. J. Ritterbusch of the Mate-
rials Science Editorial Department of
WILEY-VCH for their advice and support
in overcoming all difficulties arising in the
partnership between the authors, the editors,
and the publishers.

The Editors
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Introduction and Historical Development

G. W. Gray

1 Introduction

It is with a sense of responsibility that I be-
gin this summary of the historical develop-
ment of liquid crystals, because one of the
two authors of the original Handbook of
Liquid Crystals of 1980 [1] was Professor
Hans Kelker, a friend and a very well in-
formed authority on the history of the sub-
ject and the personalities involved in the
earlier stages of its emergence. Those who
attended the Twelfth International Liquid
Crystal Conference in Freiburg in 1988,
which marked the centenary of the discov-
ery of liquid crystals, and heard Professor
Kelker’s plenary lecture — Some Pictures of
the History of Liquid Crystals [2] — which
was part of a conference session devoted to
a historical review of the field, will know
this. Here he demonstrated that he was in
possession of a very wonderful collection of
manuscripts and photographs relating to the
scientists who, in the latter part of the nine-
teenth century and the early part of the twen-
tieth century, laid the foundations of our
present-day knowledge of liquid crystals.

I am not in that privileged situation, but
I have worked in the field for 50 years, be-
ginning my first experiments on aromatic
carboxylic acids in October 1947. I have
therefore worked through approaching half
of the historical span of the subject, includ-
ing the most recent years during which the
subject has expanded and deepened so
markedly. I hope this first-hand experience
will counterbalance my lack of detailed his-

torical knowledge of the earlier years, as
possessed by Professor Kelker. Were he
alive today, I hope he would not disapprove
of what I write in this chapter.

The history of the development of liquid

crystals may be divided into three phases:

1. The period from their discovery in the lat-
ter part of the nineteenth century through
to about 1925, the years during which the
initial scepticism by some that a state of
matter was possible in which the proper-
ties of anisotropy and fluidity were com-
bined, through to a general acceptance
that this was indeed true, and publication
of a first classification of liquid crystals
into different types.

2. The period from 1925 to about 1960, dur-
ing which general interest in liquid crys-
tals was at a fairly low level. It was a
niche area of academic research, and
only relatively few, but very active, sci-
entists were devoted to extending knowl-
edge of liquid crystals. Two world wars
and their aftermaths of course contribut-
ed greatly to the retardation of this field
during this period. Taking the aftermaths
of the wars into account, probably at least
15 years were effectively lost to progress
during this second phase.

3. The period from 1960 until today is by
contrast marked by a very rapid develop-
ment in activity in the field, triggered of
course by the first indications that tech-
nological applications could be found for
liquid crystals. These early indicattons
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were justified, and led to today’s strong
electro-optical display industry. The
quest for new applications stimulated re-
search and the flow of financial support
into the involved areas of chemistry,
physics, electrical and electronic engi-
neering, biology, etc. As a marker of this
activity, the numbers of papers and pat-
ents published in 1968 was about 2000
and this had risen to 6500 in 1995.

2 The Early Years
up to About 1925

The question as to when liquid crystals were
discovered must now be addressed. In pin-
pointing a discovery, it is necessary to dis-
tinguish simple observations of an unusual
phenomenon or effect from observations
that develop into an understanding of the
meaning and significance of that phenome-
non or effect. If we accept that the latter cri-
teria must be met to justify the word discov-
ery, then the credit for the discovery of lig-
uid crystals must go to Friederich Reinitzer,
a botanist of the Institute for Plant Physiol-
ogy of the German University of Prague,
who in a paper submitted on May 3, 1888
[3], described his observations of the
colored phenomena occurring in melts of
cholesteryl acetate and cholesteryl ben-
zoate. In addition, he noted the “double
melting” behavior in the case of cholesteryl
benzoate, whereby the crystals transformed
at 145.5°C into a cloudy fluid, which sud-
denly clarified only on heating to 178.5 °C.
Subsequent cooling gave similar color ef-
fects (but see later) to those observed on
cooling the melt of cholesteryl acetate. To-
day of course we know that the colored phe-
nomena reported by Reinitzer are character-
istic of many cholesteric or chiral nematic
(N*) liquid crystal phases.

In his article [3], Reinitzer acknowi-
edges that other workers before him had ob-
served curious color behavior in melts of
cholesteryl systems. He mentions that Pla-
nar in Russia and Raymann in Paris had not-
ed violet colors reflected from cholesteryl
chloride and that Lobisch in Germany had
observed a bluish-violet flourescence in the
case of cholesteryl amine and cholesteryl
chloride. Two things distinguish these ear-
lier observations from those of Reinitzer.
These are Reinitzer’s recording of the “dou-
ble melting” property of cholesteryl benzo-
ate, and the fact that Reinitzer carried out
preliminary studies on thin films of choles-
teryl benzoate and noted the range of spec-
tral colors reflected as the temperature de-
creased until crystallization occurred and
the complementary nature of the colored
light when the sample was viewed in trans-
mission. Moreover, Reinitzer knew of the
excellent work of the German physicist Pro-
fessor Otto Lehmann, then at the Polytech-
nical School at Aachen, in designing and de-
veloping polarization microscopes, and rec-
ognized that Lehmann could advise on the
optical behavior of his cholesteryl esters.

The approach to Lehmann was made in
March 1888 and the correspondence is ex-
cellently documented in Kelker and Knoll’s
article [2]. This interaction led to agreement
that Reinitzer’s materials were homogene-
ous systems of which Lehmann wrote in Au-
gust 1889: “Itis of high interest for the phys-
icist that crystals can exist with a softness,
being so considerable that one could call
them nearly liquid.” This led quickly to the
submission by Lehmann, by then at the
University of Karlsruhe, of his paper Uber
fliessende Kristalle to the Zeitschrift fiir
Physikalische Chemie [4].

Significantly, this uses for the first time
the term liquid crystal. As a consequence of
the above events and the development of
our understanding of liquid crystals which



stemmed from them, we must clearly ac-
knowledge Reinitzer as the true discoverer
of liquid crystals and the date of the event
as March 14, 1888.

It should be noted that the discovery re-
lated exclusively to materials we now class
as thermotropic liquid crystals, wherein the
liquid crystal phases form either on heating
crystals or on cooling isotropic liquids, that
is, as a consequence of thermal effects. In
addition to thermotropic liquid crystals, a
second class of fluid anisotropic materials
is known, namely, lyotropic liquid crystals
where the disruptive effect on the crystal lat-
tice involves a solvent (often water), cou-
pled where necessary with thermal change.
Here, the order of the crystal is broken down
by the solvent and the molecules form mi-
celles which then arrange themselves in an
ordered way, while allowing fluidity. Ex-
cess of solvent completes the decrease in or-
der and an isotropic solution is formed. Ob-
servations of anisotropy and optical bire-
fringence in such systems were indeed made
well before Reinitzer’s discovery, but like
the observations of Planar, Raymann, and
Lobisch, there was no followthrough to are-
alization of the full significance of what was
being seen. These observations were made
by Mettenheimer {5], Valentin [6], and Vir-
chow {7] in the period 1834-1861, and
involved studies of biological samples
derived from nerve tissue, for example,
myelin, a complex lipoprotein which can be
separated into fractions and which forms a
sheath round nerve cells. In water-contain-
ing sodium oleate, these sheaths develop
what have been called myelinic forms vis-
ible microscopically, especially in polarized
light, as fluid, birefringent entities. Progress
on these anisotropic systems was however
impeded by the complexity and lack of re-
producibility of the biological systems in-
volved, and whilst predating the studies of
Reinitzer and Lehmann are not generally re-
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garded as marking the discovery of liquid
crystals.

Following publication of his paperin 1889
[4], Lehmann continued work with liquid
crystals and indeed dominated the scene in
the late 1800s and the early part of the twen-
tieth century, continuing to publish on liquid
crystals until the year of his death in 1922.

Turning to purely synthetic materials, un-
like the cholesteryl esters which were of nat-
ural origin, examples of liquid crystal be-
havior were found in these by Lehmann in
1890. The materials were azoxy ethers pre-
pared by Gattermann and Ritschke [8]. The
next ten years or so saw studies of p-meth-
oxycinnamic acid and in 1902 the synthesis
by Meyer and Dahlem [9] of the first smec-
togen, ethyl p-azoxybenzoate, aithough not
recognized structurally for what it was at
that time. Through studying such materials,
Lehmann did however recognize that all liq-
uid crystals are not the same, and indeed in
1907 he examined the first liquid crystal ma-
terial exhibiting two liquid crystal phases.
This material had what was later shown to
be asmectic A (SmA)and a cholesteric (N*)
phase. Significantly in the context of much
later work in the field of applications, he
also reported on the aligning effects of sur-
faces on liquid crystals.

Despite the growing number of com-
pounds shown to exhibit liquid crystal phas-
es (and in a short number of years Vorlidnder
contributed about 250), the acceptance of
liquid crystals as a novel state of matter was
not universal. Tammann in particular [10]
persisted in the view that liquid crystals
were colloidal suspensions, and was in bit-
ter argument with Lehmann and Schenk
who upheld the view that they were homo-
geneous systems existing in a new state dis-
tinct from the crystalline solid and isotrop-
ic liquid states. Nernst [11] too did not sub-
scribe to the latter view and believed that
liquid crystals were mixtures of tautomers.



There was however a steadily growing
body of evidence supporting the view that
liquid crystals represent a true state of
matter and acceptance of this slowly grew,
aided by the excellent reviews of 1905 by
Schenk (Kristalline Fliissigkeiten und fliis-
sige Kristalle) [12] and Vorlidnder (Kristal-
linisch-fliissige Substanzen) [13]. There
then followed the important review of opti-
cal effects by Stumpf [14] and, much later,
an important paper was that by Oseen [15]
on a kinetic theory of liquid crystals. The
real seal of acceptance of liquid crystals for
what they are, i.e., a fascinating and dis-
tinct state of matter, was however given in
1922 in the famous publication by G. Frie-
del [16] in the Annales de Physique, entit-
led Les Etats Mesomorphes de la Matiére.

Here, in connection with Friedel’s article
and on a personal note, I well remember my
research supervisor, Professor and later Sir
Brynmor Jones, sending me to the library to
find the appropriate journal, requiring that
I produce a complete translation from
French of all 273 pages in order to be “ful-
ly familiar with all that had been written”.
This 1 dutifully did in the fullness of time,
and on taking my translation to show my
supervisor, he then reached up to a shelf and
withdrew a black notebook saying “now you
can compare the quality of your translation
with mine!” I learned much from that exer-
cise, as will anyone who repeats it today.

In addition to containing a wealth of in-
formation on microscopic techniques and
materials, Friedel’s article represented in
1922 the first classification of liquid crys-
tals into types, i.e., nematic, smectic and
cholesteric. Today, of course, cholesterics
are known simply as chiral nematics with no
need that they be derived from cholesterol,
and we recognize the existence of several
polymorphic smectic forms, whereas Frie-
del allowed for only one (today’s smectic A;
SmA).
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Friedel did however understand the
layered nature of smectics, firstly through
the stepped edges possessed by smectic
droplets with a free surface, and secondly
through his detailed studies of the optical
microscopic textures of thin films of smec-
tic phases. He understood the optical dis-
continuities, i.e., the defects, of the smectic
focal-conic texture and saw the relationship
of the black lines delineating ellipses of dif-
ferent eccentricities and their associated hy-
perbolae in terms of focal-conic “domains”
which may be divided into a series of par-
allel, curved surfaces known as Dupin cy-
clides. He also understood that the optical-
ly extinct homeotropic textures of smectics
of the type he studied gave positive uniaxial
interference figures consistent with systems
of layers lying flat to the surface. His mi-
croscopic studies demonstrated the im-
mense value of the optical microscope as a
precise scientific instrument in studies of all
types of liquid crystal phases.

Friedel’s article, coupled with the publi-
cations on synthesis and studies of new liq-
uid crystal materials by organic chemists in
Germany, notably Vorlinder (see, for exam-
ple, his monograph Chemische Kristallo-
graphie der Fliissigkeiten of 1924 [17]),
firmly cemented in place all the earlier ob-
servations, providing a firm basis on which
to build the future structure of the subject.

Before moving on to phase two of the his-
tory, we might just return to Reinitzer, the
discoverer of liquid crystals, and recognize
the quality of his powers of observation, for
not only did he focus on the color effects
and double melting, but also he noted the
blue color appearing in the isotropic melt
just before the sample turned into the cloudy
cholesteric phase. About this, he said the
following: “there appeared (in the clear
melt) at a certain point a deep blue colour
which spread rapidly through the whole
mass and almost as quickly disappeared,



again leaving in its place a uniform turbid-
ity. On further cooling, a similar colour ef-
fect appeared for the second time to be fol-
lowed by crystallisation of the mass and a
simultaneous disappearance of the colour
effect.” The turbid state and the second col-
or effect were of course due to the choles-
teric phase, but the first transient blue
color we now know was associated with the
optically isotropic ‘blue phases’ we are fa-
miliar with today. Although Lehmann be-
lieved that this transient effect represented
a different state, the full significance of
Reinitzer’s observations had to wait until
the 1980s when these isotropic cubic phas-
es became a focus of attention in condensed
matter physics.

A further point concerning the first phase
of our history of liquid crystals is about no-
menclature, a matter about which scientists
of today still love to argue. In the early years,
however, the debate was sparked by Friedel
who strongly objected to Lehmann’s term
liquid crystal, on the basis that liquid crys-
tals were neither true liquids nor true crys-
tals. The term does of course remain in wide-
spread use today, simply because the juxta-
position of two contradictory terms carries
an element of mystery and attraction. Frie-
del preferred the term mesomorphic to de-
scribe the liquid crystal state, and the asso-
ciated term mesophase, reflecting the inter-
mediate nature of these phases between the
crystalline and isotropic liquid states. These
terms are again widely used today and co-
exist happily with the Lehmann terminolo-
gy. A useful term springing from Friedel’s
nomenclature is the word mesogen (and
also nematogen and smectogen), used to de-
scribe a material that is able to produce me-
sophases. The associated term mesogenic is
used by some to indicate that a material does
form liquid crystal phases and by others to
indicate that a compound is structurally suit-
ed to give mesophases, but may not, if, for
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example, the melting point of the crystalline
state is too high. Then the isotropic liquid is
produced directly from the crystal, and, on
cooling, crystallization may occur too
quickly for even a monotropic liquid crys-
tal phase to form. Yet this compound may
show strong tendencies to be mesomorphic
if binary phase diagrams of state are exam-
ined using a standard material as the second
component. My view is that the term meso-
genic should be used to describe a structu-
ral compatibility with mesophase forma-
tion, without the requirement that a phase is
actually formed. After all, if the compound
does really form a mesophase, the descrip-
tion of it as mesomorphic is perfectly ade-
quate.

Finally, on the subject of nomenclature,
Friedel of course gave us today’s terms
smectic and nematic with their well-known
Greek derivations.

3 The Second Phase
from 1925 to 1959

In the first part of this period, Vorldnder and
his group in Halle contributed strongly to
the growing number of compounds known
to form liquid crystal phases, some showing
up to three different mesophases. Based
upon his work came the recognition that
elongated molecular structures (lath- or
rod-like molecules) were particularly suit-
ed to mesophase formation. His work also
showed that if the major axis of a molecule
were long enough, protrusions could be tol-
erated without sacrifice of the liquid crystal
properties. Thus 1,4-disubstituted naphtha-
lenes with a strong extension of the major
axis through the 1,4-substituents were lig-
uid crystalline, despite the protruding sec-
ond ring of the naphthalene core. It is inter-
esting that Vorldnder records that the mate-
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rials behaved as liquid crystallline resins or
lacquers (an early thought perhaps about the
potential of liquid crystals for applications).

In his book Nature’s Delicate Phase of
Matter, Collings [18] remarks that over 80
doctoral theses stemmed from Vorlénder’s
group in the period 1901-1934. Further ev-
idence of Vorldnder’s productivity is found
in the fact that five of the 24 papers present-
ed at the very important and first ever sym-
posium on liquid crystals held in 1933 under
the auspices of the Faraday Society in Lon-
don, Liquid Crystals and Anisotropic Fluids
— A General Discussion [19], were his. Per-
haps the most important consequence of
Vorldnder’s studies was that in laying down
the foundations of the relationship between
molecular structure and liquid crystal prop-
erties, attention was focused upon the mole-
cules as the fundamental structural units of
the partially ordered phases. Up to then,
even Lehmann had been uncertain about the
units involved in the ordering and what oc-
curred at the actual transitions.

The Faraday Meeting of 1933 was of
great importance in bringing together the
small number of active, but often isolated,
scientists involved at that time in liquid
crystal research. This propagated knowl-
edge and understanding, but, as we shall see,
it also generated some dispute.

As early as 1923, de Broglie and E. Frie-
del (the son of G. Friedel) had shown [20]
that X-ray reflections could be obtained
from a system of sodium oleate containing
water, and that the results were consistent
with a lJamellar or layered structure. This X-
ray work was extended [21] in 1925 to
Vorlidnder’s thermotropic ethyl p-azoxy-
benzoate, confirming G. Friedel’s conclu-
sions of a layered structure stemming from
his microscopic studies of smectic defect
structures. Further, in the period 1932-
1935, Herrmann [22], who also contributed
to the 1933 Faraday Discussion, was deci-

sive in confirming the lamellar nature of
smectics by X-ray studies which included
Vorlinder’s material exhibiting more than
one smectic phase. The latter work substan-
tiated a change from a statistical order in the
layers of one smectic to a hexagonal order-
ing in the lower temperature phase. A tilted
lamellar structure was also found by Herr-
mann for some thallium soaps [23].
Amongst other names of historical inter-
est featured on the Faraday Discussion pro-
gram were, for example, Fréedericksz and
Zolina (forces causing orientation of an an-
isotropic liquid), Zocher (magnetic field
effects on nematics), Ostwald, Lawrence
(lyotropic liquid crystals), Bernal, Sir W. H.
Bragg (developing the concept of Dupin cy-
clides in relation to Friedel’s earlier studies
of focal-conics), and also Ornstein and Kast
who presented new arguments in favor of
the swarm theory, which was first put for-
ward in 1907-1909 by Bose [24]. This the-
ory had proposed that the nematic phase
consisted of elongated swarms of some 10°
molecules, and in the 1930s much effort was
given to proving the existence of these
swarms, which were used to explain some,
but not all, of the physical properties of ne-
matics. However, at the 1933 Faraday Meet-
ing, the presentation of Oseen [25] and the
strong reservations expressed by Zocher
during the discussions were already casting
shadows of doubt on the swarm theory. To-
day of course we accept that definitive proof
of the existence of swarms was never ob-
tained, and by 1938 Zocher was expressing
further strong reservations about the theory
[26], proposing alternatively that the nemat-
ic phase is a continuum, such that the mo-
lecular orientation changes in a continuous
manner throughout the bulk of the meso-
phase. This was called the distortion hy-
pothesis and together with Oseen’s work
marked the beginning of the modern contin-
uum theory of liquid crystals. However, de-



velopments here had to wait until after the
second world war when Frank [27], at a fur-
ther Faraday discussion in 1958, and conse-
quent upon his re-examination of Oseen’s
treatment, presented it as a theory of curva-
ture elasticity, to be advanced in the next his-
torical phase by names such as Ericksen,
Leslie, de Gennes, and the Orsay Group in
France.

The period following the war up until the
1950s is also significant for the work of
Chatelain [28], in collaboration with Fal-
gueirettes. Using surface alignment tech-
niques, they measured the refractive indices
of different nematics, and Chatelain pro-
duced his theoretical treatment of the val-
ues of the ordinary and extraordinary indi-
ces of refraction of an oriented nematic melt.

Following Vorldnder, other chemists
were now becoming interested in new lig-
uid crystal materials, and in the early 1940s
we find publications on structure/property
relations by Weygand and Gabler [29]. Lat-
er, in the 1950s, Wiegand [30] in Germany
and the author in the UK were also making
systematic changes in the structures of me-
sogens to establish the effects on liquid crys-
tal behavior, The author’s work included not
only systematic modifications to aromatic
core structures, but also studies of many ho-
mologous series, establishing clearly that
within series systematic changes in transi-
tion temperature always occur, within the
framework of a limited number of patterns
of behavior. In the period 1951-1959, the
author published some 20 papers on struc-
ture/property relations in liquid crystals.
These are rather numerous to reference here,
but in the account of the third historical
phase from 1960 until today, reference to
relevant reviews and books is given.

Lyotropic liquid crystals also progressed
during this second phase. Lawrence’s paper
at the 1933 Faraday meeting discussed the
phase diagrams for different compositions
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of fatty acid salts, recognizing the different
phase types involved and the transitions
undergone with change of temperature
and/or water content. Examples of aromat-
ic materials, including dyes, giving lyo-
tropic phases were also found, and solvents
other than water as the lyophase were ex-
plored.

The early work of Robinson et al. [31]
was also done in this period. This involved
solutions of poly-y-benzyl-1.-glutamate in
organic solvents. These solutions exhibited
the selective light reflecting properties of
thermotropic cholesteric liquid crystals.

This period of history also saw the pub-
lication of work by Eaborn and Hartshorne
[32] on di-isobutylsilandiol, which generat-
ed a mesophase. This was a puzzling result
at the time, as the molecular shape was in-
consistent with views of the time that liquid
crystal formation required rod-shaped
molecules. Light would be shed on this
only after the discovery of liquid crystal
phases formed by disc-shaped molecules in
the early 1970s.

Finally, it should be noted that in this pe-
riod, in 1957, a very important review on
liquid crystals was published by Brown and
Shaw [33]. This did much to focus the at-
tention of other scientists on the subject and
certainly contributed to the increase in lig-
uid crystal research, which was to herald the
strong developments in the early 1970s.

The period 1925-1959 may be usefully
summarized now. Although the level of ac-
tivity in the field was limited, important de-
velopments did occur in relation to:

— the influence of external fields (electric
and magnetic) on liquid crystals;

— the orienting influences of surfaces;

— measurements of the anisotropic physical
properties of aligned liquid crystals;

— the range of new liquid crystal materials
and structure/property relationships;
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— the development of theories of the liquid
crystal state ranging from the swarm the-
ory to the emerging continuum theory;

— increased awareness of the value of po-
larizing optical microscopy for the iden-
tification of mesophases, the determina-
tion of transition temperatures, and reach-
ing a fuller understanding of defect tex-
tures.

4 The Third Phase from
1960 to the Present Time

The first ten years of this period saw sever-
al important developments which escalated
interest and research in liquid crystals.
Among these, there was the publication
by Maier and Saupe [34] of their papers
on a mean field theory of the nematic state,
focusing attention on London dispersion
forces as the attractive interaction amongst
molecules and upon the order parameter.
This theory must be regarded as the essen-
tial starting point for the advances in theo-
retical treatments of the liquid crystal state
which followed over the years.

There was also much activity in the field
of new liquid crystal materials, notably by
Demus et al. [35] in Germany and by the au-
thor who, in 1962, produced his monograph
Molecular Structure and the Properties of
Liquid Crystals [36], published by Academ-
ic Press.

Also, further X-ray studies began to ad-
vance knowledge of the structure of liquid
crystal phases, particularly smectics. The
work of de Vries and Diele should be men-
tioned, and later on, notably that by Leve-
lut and co-workers in France and Leadbet-
ter in England (see, for example, [37, 38]),
work which culminated in the 1980s in a
clear structural elucidation and classifica-
tion of smetic liquid crystals. This distin-
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guished the true lamellar smectics with lit-
tle or no correlation between layers from la-
mellar systems, previously regarded as
smectics, which possess three-dimensional
order and are really soft crystals. Today, the
true smectics are labeled SmA, for example,
and the crystal phases are referred to sim-
ply by a letter such as K, or by CrK. The
phase once known as SmD and first ob-
served by the author and co-workers in lat-
erally nitro substituted biphenyl carboxylic
acids [39] is now recognized [40] as a cubic
liquid crystal phase. Several other examples
of cubic thermotropic liquid crystal phases
are now known [41, 42].

Such studies focused attention on the mi-
croscopic textures of liquid crystal phases.
The defects characterizing these textures are
now well understood through rather beauti-
ful studies by workers such as Kléman [43],
and from textures it is now possible to go a
long way towards characterizing the phase
behavior of new materials. A great deal of
work on phase characterization has been
done, and two reference sources are impor-
tant [44, 45]. Through such detailed studies
of phase behavior, new phenomena were of-
ten recognized and explained, for example,
the re-entrance phenomenon through the
work of Cladis [46], and the existence of the
blue phases (BPI, BPII, and BPIII) through
the work of several groups [47]. We should
remember of course that Reinitzer did ob-
serve blue phases many years earlier and
knew, without understanding the situation,
that something occurred between the iso-
tropic liquid and the N* phase on cooling
many chiral materials. Reflectance micros-
copy played a big part in the eventual elu-
cidation of these phases as cubic phases in-
volving double twist cylinders.

The widened interest in liquid crystals
exemplified above had its origins in a num-
ber of events, such as the publication of
the Brown and Shaw review [33] and the
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author’s monograph [36], but a very big part
was played by the launch of the now regu-
lar International Liquid Crystal Confer-
ences (ILCCs). We owe these now biennial
conferences to Glenn Brown, the first one
being organised by himin 1965 in Kent State
University in Ohio. Attended by some 90
delegates from different countries, this
meeting was most important in providing
that small group of research workers with
an identity and the opportunity to meet and
discuss problems and new ideas. Glenn
Brown was indeed successful in obtaining
funding for the second ILCC, held again in
Kent State University, in 1968. The liquid
crystal community owes a great deal to
Glenn Brown for his vision in making these
meetings possible. He created for liquid
crystals a community of scientists within
which the vigorous development of new re-
search results and the technological innova-
tion of the 1970s was to generate and con-
tinue unabated to the present time.

At the 1965 ILCC Meeting, the focus on
applications was on Fergason’s presenta-
tions on thermography using cholesteric lig-
uid crystals, but in 1968, the meeting was
attended by a group of researchers from
Radio Corporation of America (RCA) in
Princeton, where work under Heilmeier,
Castellano, Goldmacher, and Williams was
being done on display devices based on liq-
uid crystals. The liquid crystal community
was having its eyes opened to the potential
of liquid crystals for application in electro-
optical displays. The seminal work of the
RCA group, initially on dynamic scattering
displays, cannot be overstressed for its im-
portance to the field. Two years later, at the
1970 ILCC in Berlin, display applications
of liquid crystals were being discussed free-
ly, and later when the patents of Schadt and
Helfrich and of Fergason on the twisted ne-
matic liquid crystal electro-optical display
mode came into the public domain, activity

intensified. At the fourth ILCC in 1972,
again at Kent State, display applications
dominated the meeting, and two years later
at the 1974 1LCC in Stockholm, the author’s
presentation was on materials for use in five
different display types, i.e., dynamic scat-
tering, Fréedericksz, twisted nematic, chol-
esteric memory, and cholesteric-nematic
phase change display devices.

Electro-optical liquid crystal display de-
vices were now well established, and the
twisted nematic device was obviously the
superior one, based as it was upon a field ef-
fect in a pure nematic of positive dielectric
anisotropy rather than upon the conductiv-
ity anisotropy, generated by ionic dopants
in nematics of negative dielectric anisotro-
py, as in dynamic scattering displays.

In 1970, the author and co-workers ob-
tained a research grant from the UK Minis-
try of Defence for work on room tempera-
ture liquid crystal materials that would func-
tion well in electro-optic displays. When our
attention was directed to liquid crystal ma-
terials of positive dielectric anisotropy rath-
er than negative dielectric anisotropy, we
were able to make rapid progress, drawing
on the store of fundamental knowledge re-
lating molecular structure to liquid crystal
properties, and, as a consequence, follow-
ing patenting, the synthesis and behavior of
the 4-alkyl- and 4-alkoxy-4’-cyanobiphe-
nyls, designed for twisted nematic displays,
were published in 1973 [48]. The history of
the events leading up to the discovery of the
cyanobiphenyls has been nicely document-
ed by Hilsum [49], the originator of the re-
search program under the author at the Uni-
versity of Hull and the coordinator of the
associated programs on physics/devices at
DRA, Malvern, and eventually on commer-
cial production at BDH Ltd (now Merck UK
Ltd).

The advent of the cyanobiphenyls made
available the materials for the manufacture
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of high quality, reliable liquid crystal dis-
plays, and in so doing provided the secure
basis upon which today’s burgeoning elec-
tro-optical liquid crystal display device in-
dustry rests. The availability of these mate-
rials also spawned intense interest in other
related families of materials, and during the
later 1970s, the cyclohexane analogs of the
biphenyls [50] and the pyrimidine analogs
[51] became available, widening the choice
of physical properties available to device
engineers.

The market place welcomed the first sim-
ple, direct drive twisted nematic liquid crys-
tal (LC) displays, but in so doing, created a
demand for devices capable of portraying
more complex data, particularly important
for the display of Chinese/Japanese charac-
ters. Multiplex driven liquid crystal displays
with some capability in this direction re-
quired the exploration of more complex
mixtures incorporating ester components.
However, the limitations of multiplex ad-
dressing were quickly exposed, encourag-
ing interest in new device forms and ad-
dressing techniques. One development was
the discovery of the supertwisted nematic
display [52, 53] and of addressing methods
for twisted nematic displays using thin film
transistors. These two possibilities have
progressed forwards successfully, each hav-
ing to overcome its own particular prob-
lems. For a survey, see the review by Schadt
[54]. As a result, in the late 1980s and ear-
ly 1990s really excellent full color LC dis-
plays for direct view and for projection, in-
volving where necessary high definition
resolution, have come to the fore and dom-
inate today’s marketplace. The devices have
steadily improved in viewing angle, bright-
ness, definition, and color quality, and the
most up to date displays (supertwisted ne-
matic and active matrix twisted nematic) are
technological products of great quality
which lead the liquid crystal display device

Introduction and Historical Development

industry into the new millennium in a most
confident mood.

Work in other display areas has of course
occurred. Through the seminal work of
R. B. Meyer and the research of Clark and
Lagerwall [55] on surface stabilized ferro-
electric liquid crystal devices based on chi-
ral smectic C liquid crystal materials, the
potential for ferroelectric devices has been
fully explored in recent years. With their
faster switching capability, they are attrac-
tive, and the difficulties over addressing
schemes and the manufacture of ferro-
electric displays will perhaps soon be over-
come to give the marketplace a further lig-
uid crystal device.

In the search for novel materials, partic-
ularly new ferroelectric materials, new
phase types were also discovered, notably
the antiferroelectric phase [56] which, with
tristable switching characteristics, also has
potential for display use, possibly overcom-
ing some of the difficulties with ferro-
electric systems and providing a further dis-
play device of high quality.

A further development in the display
area concerns liquid crystal devices using
in-plane-switching techniques, giving much
improved viewing angle of the display [57,
58]. Here the molecules switch across the
surface of the display cell, and this technol-
ogy is now being adopted by three compa-
nies. Plasma switching of other types of liq-
uid crystal display is another interesting
technology awaiting further development
[59].

Going back to the earlier 1970s, with the
advent of the cyanobiphenyls and later the
cyclohexane and pyrimidine analogs, not
only was the display device industry provid-
ed with a wealth of novel, useful materials,
but also those in fundamental research were
given a range of stable, room temperature
liquid crystal materials for study by a grow-
ing panoply of experimental and theoretical
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techniques. Fundamental research therefore
moved forward rapidly with very good read-
ily available materials and the funding for
such work that was released by the poten-
tial for technological applications. Publica-
tions of research papers and patents escalat-
ed, as mentioned earlier, and in the journals
Molecular Crystals and Liquid Crystals and
Liquid Crystals the field now has its own
dedicated literature shop windows.

The knowledge base in fundamental sci-
ence was also extended greatly by the dis-
covery in Chandrasekhar’s group [60] of
liquid crystals formed by disc-shaped mole-
cules. Capable of forming discotic nematic
phases and a range of columnar phases,
these materials currently attract much inter-
est and technological applications for them
are possible.

This period also saw the growth of work
on liquid crystal polymers both of the main
chain and the side group varieties, and
amongst others, the names of Blumstein and
Finkelmann are associated with the first ad-
vances in this field which attracts many
workers today (see [61, 62]). Main chain lig-
uid crystal polymers became known for
their ability to form high tensile strength fi-
bers and moldings, and side group liquid
crystal polymers also have applications in
optical components such as brightness
enhancement films for display devices. An-
isotropic networks, elastomers, and gels are
also intriguing systems that have been re-
viewed by Kelly [63].

Fundamental studies of liquid crystals
have also opened up much interest in met-
allomesogens, i.e., materials incorporating
metal centers and capable of giving liquid
crystal phases. Many materials ranging
from the calamitic (rod-like) type to the
disc-like metallophthalocyanines are now
known and with appropriate metal centers
have interesting magnetic characteristics.
Indeed, such have been the developments in

this area that a text devoted to the subject
has been published [64].

If this section of this chapter hardly reads
as a chronological history, this is because
the last 15 years have seen so many devel-
opments in different directions that a sim-
ple pattern of evolution does not exist. In-
stead, developments have occurred in an ex-
plosive way, emanating outward from the
core of fundamental knowledge acquired up
to the end of the 1970s. We have already
looked briefly at display applications, lig-
uid crystals from disc-shaped molecules,
liquid crystal polymers, and metallomeso-
gens, but to follow all the developments of
recent years radiating out from the central
core is hardly possible in a short chapter like
this.

Only afew topics can be selected for brief
mention, and if some areas of development
are excluded through shortness of space, the
author can at least feel confident that justice
is done to them in the later pages of this four
volume Handbook of Liquid Crystals.

4.1 Lyotropic Liquid
Crystals

Activity here may have been less intense
than in the thermotropic liquid crystal area.
Important developments began, however,
through the work of the Swedish group
under Ekwall, Fontell, Lawson, and Flautt,
and the 1970s saw the publication by
Winsor of his R-theory of fused micellar
phases [65] and of Friberg’s valuable book
Lyotropic Liquid Crystals [66].

The importance of lyotropic liquid crys-
tals in the oil industry, the food industry, and
the detergent industry is high because of the
need to know the exact behavior of amphi-
phile/water/oil systems and the role played
by the micellar phases in the context of ef-
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ficient extraction of oil from natural rocks
and whether a system will flow, the process-
es of baking and the uses of emulsifiers, and
the general efficiency of soaps and deter-
gents. Especial mention should be made of
the work of Tiddy and his studies of the com-
plex phase relations involving lamellar,
hexagonal, and viscous isotropic (cubic) mi-
cellar phases and his extension of the field
to include zwitterionic systems (see, for ex-
ample, [67]), as well as cationic and anion-
ic amphiphiles. The importance of lyotrop-
ic liquid crystal concepts in relation to bio-
logical systems and the role played therein
by liquid crystals must also be noted. A re-
cent review of lyotropic liquid crystals by
Hiltrop is to be found in [68].

4.2 Theory

Theoretical treatments of liquid crystals
such as nematics have proved a great chal-
lenge since the early models by Onsager and
the influential theory of Maier and Saupe
[34] mentioned before. Many people have
worked on the problems involved and on the
development of the continuum theory, the
statistical mechanical approaches of the
mean field theory and the role of repulsive,
as well as attractive forces. The contribu-
tions of many theoreticians, physical scien-
tists, and mathematicians over the years has
been great — notably of de Gennes (for ex-
ample, the Landau—de Gennes theory of
phase transitions), McMillan (the nemat-
ic—smectic A transition), Leslie (viscosity
coefficients, flow, and elasticity), Cotter
(hard rod models), Luckhurst (extensions of
the Maier—Saupe theory and the role of flex-
ibility in real molecules), and Chandrasek-
har, Madhusudana, and Shashidhar (pre-
transitional effects and near-neighbor cor-
relations), to mention but some. The devel-
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opment of these theories and their signifi-
cance are fully documented in the second
edition of Chandrasekhar’s excellent mono-
graph [69] entitled simply Liguid Crystals,
and supported by earlier reviews in [70].

In many of the above studies, the Gay-
Berne potential describing the interactions
between anisotropic particles has been used,
and this can be separated into repulsive and
attractive parts, enabling studies of the roles
played by each in mesophase formation.
Computer simulation has been used to in-
vestigate Gay—Berne fluids, and phase dia-
grams giving isotropic, nematic, smectic,
and crystalline phases have been produced
(see, for example, Hashim et al. [71]). Sim-
ulations aimed ultimately at the prediction
of the phase behavior of compounds of giv-
en molecular structure (the molecular dy-
namics approach), avoiding synthesis, is an-
other area of growth, supported by the in-
creasing power of computers, and results
from studies of molecular mechanics, used
in the determination of molecular structure
and lowest energy conformations, are prov-
ing to be increasingly useful (see Chap. III,
Sec. 3 of this volume [72]).

4.3 Polymer Dispersed
Liquid Crystals (PDLCs)
and Anchoring

The behavior of liquid crystals at surfaces
is of course of great importance in normal
flat panel electro-optical displays, and the
subject of anchoring is an area of strong re-
search activity, where the work of Barbero
and Durand is particularly noteworthy [73].

In recent years, PDLCs have attracted
much attention because sheets consisting of
droplets of nematic liquid crystal in an
amorphous polymer matrix can be made by
a number of techniques. The orientation in
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the nematic droplets can be manipulated by
electric fields, changing the appearance of
the sheet from cloudy to clear, and opening
up possibilities for electrically switchable
windows and panels, and for large area signs
and advertising boards. The high voltages
initially required for the operation of such
systems have been reduced considerably
and problems of off-axis haze in the view-
ing panels have been diminished. The full
impact of such switchable panels has not yet
been realized, and some of the problems
have focused attention on the fact that in
such systems the liquid crystal is con-
strained in a confined geometry, and the ra-
tio of surface contact area to bulk volume is
high. This has led to important research on
liquid crystals in confined geometries and a
text on this subject by Crawford and Zumer
was published in 1996 [74]. This valuable
book embraces other important aspects of
confinement than that in PDLC systems, and
includes porous polymer network assem-
blies in nematic liquid crystals, polymer sta-
bilized cholesterics with their implications
for reflective cholesteric displays, liquid
crystal gel dispersions, filled nematics, and
anisotropic gels.

4.4 Materials and
New Phases

The applications of liquid crystals have un-
questionably added incentive to the quest
for new liquid crystal materials with super-
ior properties such as viscosity, elastic con-
stants, transition temperatures, and stability.
In recent years this has catalyzed work on
chiral materials as dopants for ferroelectric
displays and for antiferroelectric materials
with structures avoiding the number of po-
tentially labile ester groups that were
present in the original materials in which

antiferroelectric properties were discov-
ered.

The quest for new materials, whether
driven by their potential for applications or
simply by natural scientific curiosity about
structure/property relations (i.e., as part of
fundamental research programs) has always
been and is today a vital part of the liquid
crystal scenario. Indeed, it is often the case
that the free-thinking fundamental research
on new materials opens the door to new
applications or improvements in existing
device performance. The fascination of the
liquid crystal field in fact derives from this
continuing materials—knowledge—applica-
tions knock-on effect. Importantly, it can
occur in both directions.

Thus studies of the significance of the po-
sition of the location of the double bond in
a terminal alkyl chain led to the alkenylbi-
cyclohexane systems [75], which today pro-
vide excellent materials for supertwisted ne-
matic devices, and the work on ferroelectric
materials led to the discovery of the antifer-
roelectric phase.

A notable example of phase discovery
was that of the twist grain boundary smec-
tic A* phase (TGBA*) by Goodby et al. in
1989 [76]. This new liquid crystal phase is
a frustrated smectic in which the opposing
tendencies to twist and be lamellar are ac-
commodated through a regular array of dis-
locations, the possibility of which was pre-
dicted by de Gennes [77] in 1972 when he
saw the analogous roles played by the direc-
tor in an SmA phase and the magnetic vec-
tor potential in a superconductor. The anal-
ogous TGBC* phase is also now known.

In the field of natural products, there is
growing interest in the increasing range of
carbohydrates that are being found to be lig-
uid crystalline [78—80], swinging interest
back to the role of liquid crystals in biolog-
ical systems, where recent studies of lyo-
tropic mesomorphism in deoxyguanosine
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cyclic monophosphates [81] and of the sig-
nificance of hydrogen bonding [82] and
charge transfer [83] in low molar mass lig-
uid crystals may be of further relevance.

Studies of the liquid crystal properties of
terminally [84] and laterally [85] connected
di-, tri- and tetra-mesogens are probing the
behavior in the area between monomeric
liquid crystals and liquid crystal polymers.
The intercalated smectic phase (SmA_,) has
been found [84] and the somewhat related
organosiloxanes [86] are proving to be most
interesting materials with properties inter-
mediate between low molar mass and poly-
meric liquid crystals, developed apparently
through a microsegregation of the siloxane
parts of the molecules into layers, leaving
the organic moieties as appendages. Mate-
rials with both ferroelectric and antiferro-
electric properties are provided and, signif-
icantly for applications, have almost tem-
perature insensitive tilt angles and polariza-
tions.

Finally, a breakdown of the division be-
tween calamitic liquid crystals and the co-
lumnar phases formed by disc-shaped mole-
cules has occurred through the discovery of
materials that give both types of mesophase
in single compounds. For example, some
six-ring, double swallow-tailed mesogens
reported by Weissflog et al. [87] exhibit the
very interesting phase sequence SmC—-ob-
lique columnar—SmC-nematic, combining
not only calamitic and columnar phases, but
also a re-entrant SmC phase.

5 Conclusions

Thus in the above selected areas and in many
others that cannot be mentioned specifical-
ly here, the development of knowledge and
understanding of liquid crystal systems goes
on in a manner that is quite prolific.

It remains to be said that much has hap-
pened in the short history of liquid crystals
and that the field is vigorous in research to-
day, both in the areas of fundamental sci-
ence and application driven investigations.
Saying that the position is healthy today
may lead to the question: “What of the fu-
ture?” Fortunately, the author is acting here
in the capacity of historian, and it is not in
the historian’s job description to predict the
future. It will only be said that the future
prospects for liquid crystals look healthy,
but they will only be maintained so if fun-
damental research by scientists of imagina-
tion is adequately funded to enable the ex-
ploration of new ideas, new aspects, and
new possibilities, because history does dem-
onstrate that many of the discoveries signif-
icant for applications and technology derive
from sound basic science or a sound knowl-
edge of established basic science.
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1 Introduction

Nomenclature in liquid crystal systems is
a nonsystematic language that is still, like
any modern language, very much alive.
Thus, many changes to currently acceptable
terms, introductions of new notations, and
deletions of out-moded notation have been
made since the conception of the currently
used nomenclature system. As the nomen-
clature system is in somewhat of a fluxion-
al state it is not wise to assume that all de-
finitions and accompanying notations are
sacrosanct. Nevertheless, in some areas the
topic of nomenclature has settled down into
an internationally accepted, but unrecog-
nized (by Scientific Societies) notation
system, while in other areas, where research
is still very active, changes to notation are
still common. Members of the Internation-
al Liquid Crystal Society (ILCS) and the
International Union of Pure and Applied
Chemists (IUPAC) are, however, attempt-
ing to create the first widely accepted nam-
ing system for liquid crystals. The descrip-
tions and notations that follow are in agree-
ment with the current proposals of the ILCS
and IUPAC.

Notation for liquid crystals really started
with the naming of the nematic and smectic
phases in the early 1920s by Friedel [1].
However, it was the discovery of the exis-
tence of a variety of smectic phases in the
1950s-60s which lead Sackmann and De-
mus to propose the current lettering scheme
for smectic liquid crystals [2]. Originally

only three smectic phases were defined,
SmA, SmB and SmC, but more followed
rapidly as new phases were discovered. The
notation introduced by Sackmann and De-
mus was dependent on the thermodynamic
properties of mesophases and their ability to
mix with one another, thus the miscibility of
a material of undefined phase type with a
standard material of known/defined meso-
phase morphology became the criterion for
phase classification. Immiscibility, on the
other hand has no special significance. Con-
sequently all materials should have become
standardized with those labelled by Sack-
mann and Demus.

Shortly after the introduction of the nota-
tion system, confusion set in with the nota-
tions for the phases G and H becoming inter-
changed (which was later resolved by agree-
ment between the Hull and Halle Research
Groups [3]. In addition, the D phase had
been introduced as a smectic phase but lat-
er it turned out to be cubic; the B phase was
split into two, the tilted B and orthogonal
B phases, which were later to be redefined
as the B and G phases; two E phases were
thought to exist, one being uniaxial and the
other biaxial, that were later defined as all
being biaxial; and of course there was the
perennial problem as to whether or not a
phase was a soft crystal or a real smectic
phase. This latter debate finally gave rise to
a change in notation for soft crystal phases,
the Sm notation being dropped, but with the
hangover of the B notation being used in
both smectic and soft crystal phases.
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As our understanding of smectic phases
increased, and structural studies using
X-ray diffraction became more prevalent,
there was an attempt to use crystallograph-
ic notation to describe the structures of
smectic phases and, in addition, subscripts
and superscripts were introduced to de-
scribe certain structural features, for exam-
ple the subscript 2 was introduced to de-
scribe bilayer structures. By and large, how-
ever, there has been a general resistance to
moving over to a full blown crystallograph-
ic notation system simply because there is a
general feeling that a small change in struc-
ture within a miscibility class would lead to
an unnecessary change in notation, conse-
quently leading to complications and con-
fusion.

To some degree problems of notation did
arise with the naming of columnar meso-
phases. Originally they were called discotic
liquid crystals, and indeed they also ac-
quired a crystallographic notation. Both of
these notations have, however, fallen out of
favor and the naming of the state has been
redefined. As research in disc-like systems
remains relatively active, it is to be expect-
ed that further phases will be discovered,
and as our understanding of the structures
of these phases increases changes may be
made to our current notation.

Notation in chiral phases is in flux basi-
cally because many new phases have been
recently discovered, for example, antiferro-
electric phases, blue phases and twist grain
boundary phases. Even the use of an aste-
risk to indicate the presence of chirality is a
hotly debated topic because chiral systems
have broken symmetries and sometimes hel-
ical structures. Thus the debate is an issue
over which aspect of chirality does the aste-
risk represent — broken symmetry or helic-
ity. Thus further developments and changes
in notation may be expected to occur in this
area in the future.

Another problem that exists in notation is
the relationship between thermotropic and
lyotropic nomenclature. In some cases con-
tinuous behavior has been seen between
thermotropic and lIyotropic mesophases
suggesting that they should share the same
notation; however, at this point in time this
has not occurred.

The notation scheme given below will be
used wherever possible in the Handbook of
Liguid Crystals; however for the reasons
given above, readers should take care in its
implementation, and they should also re-
member that the literature has suffered
many changes over the years and so nomen-
clature used years ago may not tally with
today’s notation.

2 General Definitions

Liquid crystal state — recommended symbol
LC - a mesomorphic state having long-
range orientational order and either partial
positional order or complete positional dis-
order.

Mesomorphic state — a state of matter in
which the degree of molecular order is inter-
mediate between the perfect three-dimen-
sional, long-range positional and orienta-
tional order found in solid crystals and the
absence of long-range order found in iso-
tropic liquids, gases and amorphous solids.

Liguid crystal — a substance in the liquid
crystal state.

Crystal phase — phase with a long-range pe-
riodic positional/translational order.

Liquid phase —phase with no long-range pe-
riodic or orientational order.

Mesophase or liquid crystal phase — phase
that does not possess long-range posi-
tional ordering, but does have long-range



orientational order. A phase occurring over
a defined range of temperature or pressure
or concentration within the mesomorphic
state.

Thermotropic mesophase — a mesophase
formed by heating a solid or cooling an iso-
tropic liquid, or by heating or cooling a ther-
modynamically stable mesophase.

Lyotropic mesophase - a mesophase formed
by dissolving an amphiphilic mesogen in
suitable solvents, under appropriate condi-
tions of concentration and temperature.

Calamitic mesophase — a mesophase formed
by molecules or macromolecules with rod
or lath-like molecular structures.

Columnar phase — phase that is formed by
stacking of molecules in columns. Note that
sugars, etc. are not necessarily discotic; dis-
cotic reflects a disc-like molecular shape.
Also phasmids are columnar, but not neces-
sarily discotic.

Mesogen (mesomorphic compound) — a
compound that under suitable conditions of
temperature, pressure and concentration can
exist as a mesophase.

Calamitic mesogen — a mesogen composed
of molecules or macromolecules with rod or
lath-like molecular structures.

Discotic mesogen — a mesogen composed of
relatively flat, disc- or sheet-shaped mole-
cules.

Pyramidal or bowlic mesogen — a mesogen
composed of molecules derived from a semi-
rigid conical core.

Polycatenary mesogen — a mesogen com-
posed of molecules having an elongated
rigid core with several flexible chains
attached to the end(s).

Swallow-tailed mesogen — a mesogen com-
posed of molecules with an elongated rigid
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core with a flexible chain attached at one
end and a branched flexible chain, with
branches of about the same length at the
other.

Mesogenic dimers, trimers etc. — a mesogen
consisting of molecules with two, three, or
more linked mesogenic units usually of
identical structure.

Sanidic mesogen — a mesogen composed of
molecules with board-like shapes.

Amphiphilic mesogen — a compound com-
posed of molecules consisting of two parts
with contrasting character, which may be
hydrophilic and hydrophobic, that is lipo-
phobic and lipophilic.

Amphotropic material — a compound which
can exhibit thermotropic as well as lyotrop-
ic mesophases.

3 Structural Features

Molecules of liquid crystalline compounds
are subdivided into the central core (meso-
genic group), the linking groups, and later-
al groups as well as terminal groups, de-
pending on whether or not the groups
lie along the long axis of the molecule. In
relation to disc-like molecules, the central
rigid region is called the core and the outer
region the periphery; linking groups have
the same definition as for calamitic rod-like
systems.

The term mesogenic means that the struc-
ture is generally compatible with meso-
phase formation. A compound that forms
real mesophases is however mesomorphic.
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4 Polymeric Liquid
Crystals

Liquid crystalline polymers are classified
either as main-chain liquid crystalline poly-
mers (MCLCP), as polymers with mesogen-
ic side groups (SGLCP), or as liquid crys-
talline elastomers.

5 Notation
of Thermotropic Liquid
Crystalline Properties

To denote one phase transition, the abbrevi-
ation T together with an index is used (for
example, Ty_; for a nematic—isotropic tran-
sition; Te_, for a smectic C—smectic A
transition).

The complete transition sequence is charac-
terized by the description of the solid state
(Sec. 5.1), the liquid crystalline transitions
(Sec. 5.2) and the clearing parameter (Sec.
5.3).

The phase symbol is followed by the upper
temperature limit as measured during the
heating and not during the cooling cycle.

Crystal types should be arranged in an as-
cending order of transition temperature.

If a transition temperature of a liquid crys-
talline phase is lower than the melting point,
this phase only occurs monotropically.

Monotropic transitions appear in round
brackets.

In this context, square brackets mean virtu-
al transitions.
Examples:

Cr 34 N 56 I designates a compound melt-
ing at 34 °C into the nematic phase; at 56 °C
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it changes into the isotropic phase; normal
behavior.

Cr 56.5 (SmA 45) I designates a compound
melting at 56.5 °C into the isotropic phase.
Below 45 °C, a monotropic A phase exists.

Cr 120 B 134 I [N 56 1] designates a com-
pound melting at 120 °C into the crystal B
phase. At 134°C the isotropic phase is
formed. The virtual nematic clearing point
of 56 °C is one obtained by extrapolation
from mixtures.

Cr; 78 Cry; 212 N ? Iecomp designates a
compound with a crystal to crystal transi-
tion at 78 °C and a melting point of 212 °C
to a nematic phase. The clearing point is
unknown because decomposition takes
place.

Cr; 112 (Cr, 89) I designates a material
with a metastable crystal phase formed on
cooling the isotropic melt slowly and hav-
ing a lower melting point than the stable
crystal phase.

5.1 Description
of the Solid State

Cr crystalline phase
Cr, second crystalline phase
g  glassy state

T, glass-transition temperature

5.1.1 Description
of Soft Crystals

The following phases should just be called
B, E, etc. (i.e. retaining their historic clas-
sification, but losing their smectic code let-
ter Sm) because they are no longer regard-
ed as true smectics as they have long range
positional order. In fact they are soft or dis-
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ordered crystals. The single letter notation
(B, E, etc.) is preferred to B, E¢, etc.

B crystal B
E crystal E
E .aq crystal E phase with modulated

in-plane structure

G crystal G
H crystal H
J crystal J

K crystal K

Tilted Chiral Soft Crystal Phases

A superscript asterisk (*) is used through-
out to denote the presence of chirality.

I*  tilted chiral crystal J

H* tilted chiral crystal H
G* tilted chiral crystal G
K* tilted chiral crystal K

Chiral Orthogonal Soft Crystal Phases

A superscript asterisk (*) is used through-
out to denote the presence of chirality.

B* chiral orthogonal crystal B phase
E* chiral orthogonal crystal E phase

5.2 Description of the
Liquid Crystalline Phases

5.2.1 Nematic and Chiral
Nematic Phases

n  director

N nematic

N* chiral nematic (cholesteric)

uniaxial nematic phase

N, biaxial nematic phase (sanidic phase)

infinite pitch cholesteric, i.e. at a helix
inversion or compensation point

BP blue phases. These are designated BPy,
BPy;, BPyjy or BPy,,, and BPS.

5.2.2 Smectic Liquid Crystals

Use Sm for smectic instead of S (unless spelt
out), this avoids subscripts and double sub-
scripts

SmA Smectic A
SmA | monolayer
SmA, bilayer
SmA, interdigitated bilayer
SmA modulated bilayer
SmB or Smectic B; hexatic B
SmB,., (SmB preferred)
SmC Smectic C
SmC, monolayer
SmC, bilayer
SmCj interdigitated bilayer
SmC modulated bilayer
SmC,, alternating tilt phase —
see smectic O
SmF Smectic F
Sml Smectic |
SmM  Smectic M — not found common
use so far
Smectic O —~ not found common
use so far. Use carefully in relation
to smectic Cy, and antiferroelec-
tric smectic C* phase
SmO and SmM should be defined
in the text

SmO

Intercalated mesophases take the sub-
script ¢, e.g., SmA..

Biaxial variants of uniaxial smectic phases
take the subscript b, e.g., SmA,,.

5.2.3 Chiral Smectic Liquid
Crystals

Usually given the notation * to indicate the
presence of chirality, e.g., SmA*, SmC*.
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Twist Grain Boundary Phases (TGB)

Orthogonal TGB Phases

TGBA* structure based on the smectic A
phase. The phase can be either commensu-
rate or incommensurate depending on the
commensurability of the helical structure
with respect to the rotation of the smectic A
blocks in the phase.

TGBB* proposed structure based on a hel-
ical hexatic B phase.

Tilted TGB Phases

TGBC phase poses the following problems
for nomenclature:

TGBC where the normal smectic C* helix
is expelled to the screw dislocations.

TGBC* phase where the blocks have a lo-
cal helix associated with the out of plane
structure.

Possibly too early to define notation yet;
therefore spell out notation in text.

Tilted Chiral Phases

SmC* chiral C phase

SmCZ infinite pitch smectic C* — ferro-
electric

SmC# unwound antiferroelectric phase

occurring at higher temperature,
and above a ferroelectric SmC*
phase in a phase sequence

SmC# ferrielectric phases that occur on
cooling ferroelectric C* phases
SmC}% antiferroelectric C* phase

Try not to use @, B and ¥ notations, simply
spell out the phase type, e.g. ferrielectric
SmC* phase, or SmC¥* (ferri).

The above notations may also be applied to
SmI* and SmF* phases as and when re-
quired — for example, SmlI} is an antiferro-
electric I* phase.
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Orthogonal Phases
SmA*

SmB*/
SmBy..

chiral orthogonal smectic A
chiral orthogonal hexatic smectic
B phase (SmB* preferred)

Analogous Achiral Systems

Here, antiferroelectric-like structures are
often observed, i.e. zigzag layer ordering.
The following designation should be used
and reference to antiferroelectric-like order-
ing should be suppressed:

SmC,,, alternating tilt smectic C phase —
see also smectic O for cross-refer-
encing

Unknown Phases

Label as SmX,, SmX,, etc.

5.2.4 Columnar Phases

Np  nematic discotic phase

Col,, hexagonal discotic

Col,,, ordered hexagonal columnar phase

Col,y disordered hexagonal columnar
phase

Col,, ordered rectangular columnar phase

Col,y disordered rectangular columnar
phase

Col, tilted columnar phase

0] phasmidic phase, but Col is preferred

For nematic phases — spell out positive and
negative birefringent situations in the text.
In addition spell out if the nematic phase is
composed of single molecular entities or
short columns which exist in a disordered
nematic state.

Care should be taken when using the term
discotic; columnar is preferred.

Unknown Discotic Phases
Coll . C012, etc.



5.2.5 Plastic Crystals

Rotationally (3-D) disordered crystals that
may be derived from globular molecules
leading to isotropic phases. This classifi-
cation does not apply to crystal smectic
phases composed of elongated molecules,
although these could be described as aniso-
tropic plastic crystals.

5.2.6 Condis Crystals

Crystals in which the positional and confor-
mational order in the packing of molecules
arranged in parallel is lost to some degree.

5.2.7 Cubic

Cubic thermotropic liquid crystalline phas-
es are designated Cub.

CubD Cubic D phase

5.2.8 Re-entrants

Use the same notation as for nematic or
other appropriate phase with subscript re-
entrant, i.e., N or SmC_, or Col,.

5.3 Description of the
Clearing Parameters

| isotropic, standard case

Tgecomp decomposition at clearing temper-
ature

L. extrapolated temperature
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6 Stereochemistry
#) unknown chirality

One Chiral Centre (R or S)

S) chiral (S)
(R) chiral (R)
(S)/(R) racemate

Two Chiral Centres

This situation is more complex and de-
pends upon whether the two centres are the
same or different. If they are the same the
notation should be: chiral (S,S or R,R); or
for racemic materials (5,5 or R,R); meso-
compounds (optically inactive by internal
compensation should be denoted as (S.R
or R,S).
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Theory of the Liquid Crystalline State

1 Continuum Theory for Liquid Crystals

Frank M. Leslie

1.1 Introduction

Continuum theory for liquid crystals has its
origins in the work of Oseen [1] and Zoch-
er [2] in the 1920s. The former essentially
derived the static version of the theory for
nematics that has been used extensively in
device modelling, while the latter success-
fully applied it to Fréedericksz transitions
{3]. Later Frank [4] gave a more direct for-
mulation of the energy function employed
in this theory, and stimulated interest in the
subject after a period of relative dormancy.
Soon thereafter Ericksen {5] set the theory
within a mechanical framework, and gener-
alized his interpretation of static theory to
propose balance laws for dynamical beha-
viour [6]. Drawing upon Ericksen’s work,
Leslie [7] used ideas prevalent in continu-
um mechanics to formulate constitutive
equations, thus completing dynamic theory.

This continuum theory models many stat-
ic and dynamic phenomena in nematic lig-
uid crystals rather well, and various ac-
counts of both the theory and its applica-
tions are available in the books by de Gennes
and Prost [8], Chandrasekhar [9], Blinov
[10] and Virga [11], and also in the reviews
by Stephen and Straley [12], Ericksen [13],
Jenkins [14] and Leslie [15]. Given this suc-

cess of continuum theory for nematics,
much current interest in continuum model-
ling of liquid crystals now centres upon ap-
propriate models for smectic liquid crystals,
liquid crystalline polymers and (to a lesser
extent) lyotropics. Otherwise, interest in ne-
matics is largely confined to studies of be-
haviour at solid interfaces, this including
discussions as to whether or not one should
include an additional surface term in the
Frank—Oseen energy as proposed by Neh-
ring and Saupe [16], although there has al-
so been some activity into the modelling of
defects, particularly using a modified theo-
ry proposed recently for this purpose by
Ericksen {17].

In this section | aim to describe in some
detail continuum theory for nematics, and
also to draw attention to some points of cur-
rent interest, particularly surface conditions
and surface terms. At this juncture it does
seem premature to discuss new develop-
ments concerning smectics, polymers and
lyotropics, although a brief discussion of an
equilibrium theory for certain smectics
seems appropriate, given that it relates to
earlier work on this topic. Throughout, to
encourage a wider readership, we endea-
vour to employ vector and matrix notation,
avoiding use of Cartesian tensor notation.
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1.2 Equilibrium Theory
for Nematics

1.2.1 The Frank—-Oseen Energy

Continuum theory generally employs a unit
vector field n(x) to describe the alignment
of the anisotropic axis in nematic liquid
crystals, this essentially ignoring variations
in degrees of alignment which appear to be
unimportant in many macroscopic effects.
This unit vector field is frequently referred
to as adirector. In addition, following Oseen
[1] and Frank (4], it commonly assumes the
existence of a stored energy density W such
that at any point

W=W(n, Vn) (1)

the energy is therefore a function of the di-
rector and its gradients at that point. Since
nematic liquid crystals lack polarity, n and
-n are physically indistinguishable and
therefore one imposes the condition that

W(n, Vn) = W(-n, —Vn) 2)

and invariance to rigid rotations requires
that

W(n, Vn) = W(Pn, PVnP") 3)

where P is any proper orthogonal matrix,
the superscript denoting the transpose of the
matrix. While the above suffices for chiral
nematics or cholesterics, for non-chiral ne-
matics, invariably referred to simply as ne-
matics, material symmetry requires that
(Eq. 3) be extended to

W(n, Vn) = W(Qn, QVnQ") 4)

where the matrix Q belongs to the full or-
thogonal group, the function is therefore
isotropic rather than hemitropic.

Oseen and Frank both consider an ener-
gy function that is quadratic in the gradients
of the director n, in which case the condi-
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tions (Eq. 2) and (Eq. 3) lead to

2W = K (div n)? + Ky(n - curl n + ¢)°
+ Kslnxcurl n|? + (K, + Ky)
- div{(n - grad)n — (div n)n] 5)

where the K s and g are constants. The above
is the form appropriate to cholesterics or
chiral nematics, g being related to the natu-
ral pitch of the characteristic helical config-
urations found in these materials, through

p=2rlq. (6)

For ordinary nematics, however, the condi-
tions (Eq. 2) and (Eq. 4) yield

2W = K,(div n)? + Ky(n - curl n)?
+Kslnxcurl n|? + (K, + K,)
- div[(n - grad)n —- (div n)n] (7)

the coefficient ¢ necessarily zero for such
materials. This latter energy can alternative-
ly be expressed as

2W = (K, - K, - K,;)(div n)*
+ Kytr(VnVn?) + K, tr(Vn)? (8)
+ (K5 — K;)(n - grad)n - (n - grad)n

trA and AT denoting the trace and transpose
of the matrix A, respectively. This latter
form can be more convenient for some pur-
poses. It is common to refer to the constants
K|, K, and K5 as the splay, twist and bend
elastic constants, respectively, while the K,
term is sometimes omitted since the last
term in the form (Eq. 7) can clearly be ex-
pressed as a surface integral.

Given that nematics tend to align uni-
formly with the anisotropic axis everywhere
parallel, Ericksen [18] argues that this must
represent a state of minimum energy, and
thus assumes that
W(n, Vn) > Wn, 0), Vn#0 9)
and as a consequence the coefficients in (Eq.
7) or (Eq. 8) must satisfy

K,>0, K,>0, K;>0,
2K\ > K, +K,>0, Ky>K, (10)



Jenkins [19] discusses the corresponding re-
strictions placed upon the energy (Eq. 5) by
assuming that the characteristic twisted hel-
ical configuration represents a minimum of
energy.

To conclude this section we note an iden-
tity derived by Ericksen [6] from the condi-
tion (Eq. 3) by selecting

P=] +eR, R"=-R (11)

1 being the unit matrix and € a small param-
eter. With this choice one can quickly show
that

T
n*a—W—+Vn(a—W—) +vaT W

on Jdvn dVn
_OW W g (W g
"~ on *n+8ann +(8Vn) Vn (12)

aresult required below. In the above, the no-
tation a*b represents the 3 X3 matrix with
(i, )™ element a; b;.

1.2.2 A Virtual Work
Formulation

The approach adopted by Ericksen [5] to
equilibrium theory for both nematic and
cholesteric liquid crystals appeals to a prin-
ciple of virtual work, which for any volume
V of material bounded by surface S takes the
form

8 [Wdv=[(F-8x+G-An)dv
14 14
+[(t-8x+s-An)ds (13)
S

where
An = dn + (3x - grad)n (14)

F denotes body force per unit volume, t sur-
face force per unit area, and G and s are gen-
eralized body and surface forces, respec-
tively. With the common assumption of in-
compressibility the virtual displacement 8x
is not arbitrary, but is subject to the con-
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straint
divdx =0 (15)

and of course the variations dn and An are
constrained by

dn-n=An-n=0 (16)

due to n being of fixed magnitude.
Through consideration of an arbitrary, in-

finitesimal, rigid displacement in which An

is zero, it quickly follows from (Eq. 13) that

[Fdv+{tds=0 a7
v s

which of course expresses the fact that the
resultant force is zero in equilibrium. Sim-
ilarly, consideration of an arbitrary, infini-
tesimal, rigid rotation e, in which

X=wxX, An=oxn (18)

yields from (Eq. 13) following rearrange-
ment of the triple scalar products

J(xxF+nxG)dv+ [(xxt+nxs)ds=0
1% 3 (19)

which one interprets as a statement that the
resulting moment is zero in equilibrium.
Hence (Eq. 19) relates the generalized forc-
es G and s to the body and surface moments
K and ¢, respectively, through

K=nxG, £=nxs 20)

which allows the determination of the gen-
eralized body force.

By first expressing the left hand side of
the statement of virtual work (Eq. 13) as us-
ing (Eq. 15)

8 wdv=[(@W+(d gradW)dv  (21)
Vv 14

this taking account of the change of volume
in the virtual displacement, and then reor-
ganizing the resultant volume integral so
that it has a similar format to the right hand
side of (Eq. 13), it is possible to obtain ex-
pressions for the surface force t and the gen-
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eralized surface force s, and also two equa-
tions required to hold in equilibrium [5]. De-
noting by v the unit outwards normal to the
surface S and bearing in mind the constraints
(Eq. 15) and (Eq. 16), one finds from the
surface integrals

——py+T%, T°=-vn' W
t=—-pv+T°v, 1 n avn

= Bn+sy, 5 =W 22
s=pfn+S%, § Vn 22)
and also from the volume integrals
F—grad p+divT*=0,
G- divs'=yn, (23)

with p an arbitrary pressure due to incom-
pressibility, and  and y arbitrary scalars
due to the director having fixed magnitude.
In equations (Eq. 23) the divergence applies
to the second of the indices of the matrices
T° and §°. The former of (Eq. 23) clearly
represents the point form of the balance of
forces (Eq. 17), while the latter can be
shown to be the point form of the balance of
moments (Eq. 19), this requiring some ma-
nipulation involving the identity (Eq. 12).

1.2.3 Body Forces and Moments

While the action of gravity upon a liquid
crystal is identical to that on other materi-
als, external magnetic and electric fields
have a rather different effect upon these an-
isotropic liquids than they do on isotropic
materials. Both can give rise to body forces
and moments as is to be expected {rom rath-
er simple arguments common in magneto-
statics and electrostatics. To fix ideas, con-
sider a magnetic field H which induces a
magnetization M in the material, and this in
turn gives rise to a body force F and a body
moment K, given by

F=M: gradH, K=MxH 24)

In an isotropic material the induced magnet-
ization is necessarily parallel to the field and
the couple is zero, but for a nematic or chol-
esteric liquid crystal the magnetization can
have an anisotropic contribution of the form

Xe=Xy— XL (25

xand x, denoting the diamagnetic suscept-
ibilities when n and H are parallel and per-
pendicular, respectively. As a consequence
a body moment can occur given by

K=yn-HnxH

M=y H+ yn- Hn,

(26)

and it immediately follows from the first of
equations (Eq. 20) that

G=yn- HH 27)

any contribution parallel to the director be-
ing simply absorbed in the scalar ¥ in equa-
tions (Eq. 23). In general the anisotropy of
the diamagnetic susceptibility x,, is positive,
but it is also rather small. Consequently one
can ignore the influence of the liquid crys-
tal upon the applied field.

Similar expressions arise for an electric
field E, this creating an electric displace-
ment D of the form

D=¢gE+¢n:En, (28)

g and £ denoting the corresponding dielec-
tric permittivities, which gives rise to simi-
lar body forces and moments. However, as
Deuling [20] points out, there can be one im-
portant difference between the effects of
magnetic and electric fields upon liquid
crystals, in that an electric field can give rise
to significant permittivities, and thus one
must allow for the influence of the liquid
crystal upon the applied field by employing
the appropriate reduced version of Max-
well’s equations.

Associated with a magnetic field there is
an energy

£a=£||_£_1_

w:%M-H (29)



and if one regards the energy  as simply a
function of the director n and position x,
then one can write
oy oy
F=—" G==- 30
ox on (30)
the former using the fact that in equilibrium
the magnetic field is irrotational. However,
if the field applied is dependent upon the di-
rector, as can occur for an electric field, then
(Eq. 30) are not valid.

1.2.4 The Equilibrium
Equations

The equations (Eq. 23) representing balance
of forces and moments constitute six equa-
tions for four unknowns, two components
of the unit vector n and the scalars p and ¥.
However, this apparent overdeterminacy
does not materialize if the external body
force and moment meet a certain require-
ment [5]. To see this combine the two equa-
tions as follows

F+Vn'G-gradp+divT*

+Vn'divs®-vaT ¥ =g (31)
- on
and by appeal to equations (Eq. 22) this re-
duces to

F + Vn'G = grad(p + W) (32)

clearly limiting the body force and moment.
However, when (Eq. 30) applies, the above
at once yields

p+W-vy=p, (33)

where p,, is an arbitrary constant pressure,
and thus the equation for the balance of forc-
es integrates to give the pressure, removing
the potential overdeterminacy. Also the bal-
ance of moments becomes

LGS (34)

div§®— on 8 =7n
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which can be written in forms more conven-
ient for particular problems as discussed by
Ericksen [21].

Frequently one selects a particular form
for the director n so that it is immediately a
unit vector, this representation invariably
involving two angles 6 and ¢ so that

BT
Initially for purposes of illustration it is con-
venient to restrict 8 and ¢ to be functions of
a single Cartesian coordinate, say z, and con-
sider the application of an external magnet-
ic field H, so that (Eq. 30) holds. In this event

W=W(@, ¢ 6,¢), wv=xx069¢ (36)

where the prime denotes differentiations
with respect to z. Employing the chain rule,
one obtains

(35)

o af, of

ot a¢ (37)
and thus
oW _aw of L aw (o’ o Of
26~ on 20 o’ (3929 +aea¢¢J
OW _ow of 9dx _Jy of (38)
00 on’ 96’ 06 oJn 08

with similar expressions for the derivatives
with respect to ¢ and ¢’. Combining the
above it follows that

(al)' oW _ 9y
a6’ 96 ' 06
_|(ow) _ow oy | of
_[(an’) on Bn} 00 G
and similarly
ow) _aw 4
') d¢ 09
_ (aw)'_awﬁ_v/ Lof (40)
on’ on  on | d¢
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Hence, employing Egs. (34) and (35) the
former can be rewritten as

oW\ oW , 9x _

(ae') 36 a0~

oW ,_M I _ 41
(aay) 20 09 @D

For the general case when 6 and ¢ are
arbitrary functions of Cartesian coordi-
nates, essentially a repetition of the above
leads to

oW \_ow _ 9x _
div (ave) 26 T30~

oW |_ow , 9x _ 42
dlv[&Vq)) 8¢ 8¢ =0 (42)

which are clearly more convenient to use
than (Eq. 34).

In addition, as Ericksen [21] also shows,
the above reformulation can be extended to
include curvilinear coordinate systems (v,
Y2, y3) introduced by

X =X(¥y, Y2, ¥3)- (43)

Denoting the Jacobian of this transforma-
tion by

d(xy, Xz, X3)
= =32 44
Iy, ¥25 3) (44
and introducing the notation
W=JW=W( 7:,6.9, 2 90 a¢j
Vi~ 0
v=Jy=x(:0.9) (45)

where y; is short for y,, y,, and y;, and sim-
ilarly for the partial derivatives, one can
show that (Eq. 34) can be recast as

oW\ ow . dx _

(ae,,-j 20 0=

oW | _oW , 9x _ 4
[a%j WL H g (46)

where
_90 4 _99 47
%o 4y “

and the repeated index is summed over the
values 1, 2 and 3.

Rather clearly Egs. (41), (42) and (46) are
appropriate forms of the Euler-Lagrange
equations for the integral

[(W —y)dv (48)
14

this the formulation of equilibrium theory
initially adopted by, for example, Oseen [1]
and Frank [4].

For electric fields, certainly for the spe-
cial cases generally considered, the outcome
is rather similar in that the equation for the
balance of forces integrates to give the pres-
sure, and one can recast that for balance of
moments in the same way as above. How-
ever, a general treatment does not appear to
be available.

1.2.5 Boundary Conditions

In general the choice of boundary conditions
for the alignment at a liquid crystal-solid
interface is one of two options, either strong
or weak anchoring [8]. Strong anchoring as
the term suggests implies that the alignment
is prescribed at the boundary by a suitable
prior treatment of the solid surface and re-
mains fixed in the presence of competing
agencies to realign it. Most commonly this
fixed direction is in the plane of the surface
(planar) or it is perpendicular (homeotrop-
ic), but it need not be so. Weak anchoring,
first proposed by Papoular and Rapini [22)
assigns an energy to the liquid crystal-sol-
id interface, and assumes a balance between
the moment or torque in the liquid crystal
from the Frank—Oseen energy and that aris-
ing from the interfacial energy. Denoting by
w this latter energy per unit area, the sim-



plest assumption is a dependence upon the
director n and a fixed direction n, at the
interface, so that

w=w(n, n,) (49)
but equally one can have
w=wn, v, 1) (50)

where v is again the unit normal and r a
fixed unit vector on the surface. By essen-
tially a repetition of the approach of sec-
tion 2, Jenkins and Barratt [23] show that
this leads to the boundary condition

ow | odw
Vn =V + n =/An (51)

W again denoting the Frank—Oseen energy
and A an arbitrary scalar.

If one introduces the representation
(Eq. 35), it follows that

W=W®, ¢ VeV, w=wb 9 (52

and using the methods of the previous sec-
tion the boundary condition (Eq. 51) be-
comes

W dw_, oW . 00

ave 98 aV¢ a¢ =0 63

Frequently these boundary conditions can
be reduced to equations for 8 and ¢ at the
interface by eliminating the derivatives of 0
and ¢, after they have been obtained from
the equilibrium equations.

More recently, however, it has become
apparent that the situation can be more com-
plex with the realization that surface an-
choring in nematics can be bistable, as found
by Jerome, Pieranski and Boix {24] and
Monkade, Boix and Durand [25]. Shortly
thereafter, Barberi, Boix and Durand [26]
showed that one can switch the surface
alignment from one anchoring to the other
using an electric field. As Nobili and Du-
rand [27] discuss, one must consider rather
more complex forms for the surface energy
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than previously in order to model these ef-
fects adequately, and they measure some rel-
evant parameters, Sergan and Durand [28]
describing further measurements.

1.2.6 Proposed Extensions

Some 25 years ago, Nehring and Saupe [16]
proposed that one should add terms linear
in second gradients of the director to the
Frank—Oseen energy, this ultimately entail-
ing the inclusion of a single additional term,
namely

K, 5 div((div n)n) (54)

which clearly proves to be a surface term in
the sense that the volume integral integrates
to give a surface integral over the boundary.
On the grounds of a microscopic calculation
they argue that the coefficient in (Eq. 54) is
comparable in magnitude to the other coef-
ficients in the Frank—Oseen energy, and so
the term should be added.

More recently Oldano and Barbero [29]
include such a term and consider the varia-
tional problem for static solutions to con-
clude that in general there are no continu-
ous solutions to this problem, since it is not
possible to satisfy all of the boundary con-
ditions that arise in the variational formula-
tion. These are of two types, one corre-
sponding to weak anchoring as described in
the previous section, but the other lacking a
physical interpretation. This has given rise
to some controversy, initially with Hinov
[30], but later with contributions from Bar-
bero and Strigazzi [31], Barbero, Sparavig-
na and Strigazzi [32], Barbero [33], Perga-
menshchik [34] and Faetti [35,36]. In gen-
eral the arguments rest solely upon a reso-
lution of the variational problem, and most-
ly favour the inclusion of higher order de-
rivatives in the bulk elastic energy in differ-
ent ways to overcome this difficulty. More
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recently Barbero and Durand [37] relate this
additional term to temperature-induced sur-
face transitions in the alignment, and Bar-
beri, Barbero, Giocondo and Moldovan [38]
attempt to measure the corresponding coef-
ficient. Also Lavrentovich and Pergamensh-
chik [39] argue that such a term explains
their observations of stripe domains in ex-
periments with very thin films, and also pro-
vide a measurement of the coefficient.
While these latter developments relating to
experimental observations are of interest, it
is rather early to draw any conclusions.

A further recent innovation is due to
Ericksen [17] who proposes an extension to
the Frank—Oseen theory in order to improve
solutions modelling defects. To this end he
incorporates some variation in the degree of
alignment or the order parameter, and there-
fore proposes an energy of the form

W=W(s, n, Vs, Vn) (55)

where n is again a unit vector describing
alignment and s is a scalar representing the
degree of order or alignment. By allowing
this scalar to tend to zero as one approach-
es point or line defects, it is possible to avoid
the infinite energies that can occur with the
Frank-Oseen energy. Some account of anal-
yses based on this development are to be
found in the book by Virga [11].

1.3 Equilibrium Theory
for Smectic Liquid Crystals

1.3.1 An Energy Function
for SmC Liquid Crystals

The first to give serious thought to contin-
uum theory for smectics appears to have
been de Gennes’ group at Orsay [8].
Amongst other things they present an ener-

gy function for SmC liquid crystals [40], al-
beit restricted to small perturbations of pla-
nar layers. More recently, however, Leslie,
Stewart, and Nakagawa [41] derive an en-
ergy for such smectics which is not limited
to small perturbations, but which is identi-
cal to the Orsay energy when so restricted
[42]. Below our aim is to present this ener-
gy, and show its relationship to that pro-
posed by the Orsay group.

One can conveniently describe the layer-
ing in smectic liquid crystals by employing
a density wave vector a, which following
Oseen [43] and de Gennes [8] is subject to
the constraint

curla=0 (56)

provided that defects or dislocations in the
layering are absent. To describe SmC con-
figurations de Gennes adds a second vector
¢ perpendicular to a and in the direction of
inclination of the tilt of alignment with re-
spect to a. Leslie, Stewart and Nakagawa
[41] invoke two simplifications to reduce
mathematical complexity that clearly re-
strict the range of applicability of their en-
ergy, but equally appear very reasonable in
many cases. They firstly assume that the
layers, although deformable, remain of con-
stant thickness, and also that the angle of tilt
with respect to the layer normal remains
constant, the latter excluding thermal and
pretransitional effects. With these assump-
tions there is no loss of generality in choos-
ing both a and c to be unit vectors, identify-
ing a with the layer normal, the constraint
(Eq. 56) still applying.

As in nematic theory one assumes the ex-
istence of an elastic energy W which here is
afunction of both a and ¢ and their gradients,

so that
W =W(a, ¢, Va, Vo) (57)

The absence of polarity in the alignment im-
plies that the energy is independent of a si-
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multaneous change of sign in a and ¢, and
thus

W(a, ¢, Va, V¢) = W(-a, —¢, -Va, —Ve)

(58)
Invariance to rigid rotations adds the re-
quirement that

W(a, ¢, Va, Vc) = W(Pa, Pc, PVaP?, PVcPT)
(59)

for all proper orthogonal matrices P. While
these conditions suffice for chiral materiats,
for non-chiral materials symmetry requires
that (Eq. 59) is extended to include all or-
thogonal matrices.

Assuming a quadratic dependence upon
gradients one finds for non-chiral materials
that [44]

2W = K4(1rVa)? + K4(c - Vac)?
+ 2K4@¢rVa)(c - Vac)
+ KS(trVe)? + K5tr(VeVel)
+ K5(Vee - Vee)
+ 2K4(Vee - Vea)
+ 2K{(trVe)(c - Vac)
+ 2K&trVe)(trVa) (60)

the coefficients being constants. This ex-
pression omits three surface terms associat-
ed with

tr(Ve)y> — (trVe)?,  tr(Va)® - (trVa)?,
tr(VeVa) — (1rVa)(trVe), (61)
partly on the grounds that the above suffic-
es for present purposes.

For chiral materials Carlsson, Stewart and
Leslie [45] show that one must add two terms

2K3b - Vac, 2K:ib-Vca (62)

plus an additional surface term associated
with div b, where b completes the orthonor-
mal triad with the vectors a and ¢, so that

b=axc (63)

The latter of (Eq. 62) describes the charac-
teristic twist of the ¢ director about the layer

normal, while the former implies a non-pla-
nar equilibrium configuration, and conse-
quently is generally omitted.

One can of course employ any two mem-
bers of the orthonormal triad a, b and ¢ to de-
scribe smectic configurations, and employ-
ing b and ¢ the energy (Eq. 60) becomes [44]

2W = A (b-curl ¢)? + Ay (c-curl b)?
+2A;(b-curl c)(c-curl b)
+ By (div b)? + B, (div ¢)?

2
+B3[%(b~curl b+c¢-curl C):l

+2B,5(div b)B(b -curl b+¢-curl c)]

+2C(div ¢)(b-curl ¢)
+2C,(div c)(e-curl b) (64)

As Carlsson, Stewart and Leslie [42] dis-
cuss, the terms associated with the coeffi-
cients A|,, A, ,, By, B, and B, represent in-
dependent deformations of the uniformly
aligned planar layers, the remaining terms
being coupling terms. Also, as the notation
for the coefficients anticipates, this expres-
sion reduces to the Orsay energy [40] when
one considers small perturbations of uni-
formly aligned planar layers. The coeffi-
cients in the two energies (Eq. 60) and
(Eq. 64) are related by

K{=A;;, K3=2A;,+A;,+A;;+B;5;-B,,
2K§=—(2A; +2A,, + By)

K{=B, - Bs, K§:B3, Kg:Bl"B3’
Kft:Bm

Ki=C, + C,, $=-C, (65)

as Leslie, Stewart, Carlsson and Nakagawa
[44] demonstrate.

1.3.2 Equilibrium Equations

Adopting a similar approach to that by
Ericksen for nematics, Leslie, Stewart and
Nakagawa [41] assume a principle of virtu-
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al work for a volume V of smectic liquid
crystal bounded by a surface S of the form

8 [Wdv=[(F-8x+G“-Aa+G°-Ac)dv
14 1%

+] (t-8x +s®-Aa+s° - Ac) ds
N

(66)
where
Aa = %a + (8x - grad)a,
Ac =8¢ + (8x - grad)c (67)

F denotes external body force per unit vol-
ume, G“ and G generalized external body
forces per unit volume, t surface force per
unit area, and s and s° generalized surface
forces per unit area. As before, on account
of the assumed incompressibility, the virtu-
al displacement is not arbitrary, but is sub-
ject to

divox =0 (68)
and the variation da must satisfy
curl 6a = curl(Aa — Vadx) = (69)

on account of (Eq. 56). In addition of course

a-0a=c-0c=a-Aa=c-Ac=0

a-6c+c-da=a-Ac+c-Aa=90 (70)

given that a and ¢ are mutually orthogonal
unit vectors.

By a repetition of the arguments for a ne-
matic regarding an infinitesimal, rigid dis-
placement and rotation, one deduces that

[Fdv+[tds=0

\4 S
[(xxF+axG®+exG)dv
v

=[(xxt+axs®+cxs)ds=0 (71)
representing balance of forces and moments,
respectively. Hence, as above, it is possible
to relate the generalized forces to a body mo-
ment K and surface moment € as follows

K=axG+¢c¢xG°, €=axs’+cxs°

(72)

essentially allowing the determination of
the generalized body forces.

By rewriting the left hand side of (Eq. 66)
just as before, it follows that the surface
force and generalized surface forces are giv-
en respectively by [41]

t= —pv+VaT(ﬂxv)+Z"‘v,

TS =-Va’ W _ 7 oW

dVa Ve
s =oa+uc+vxf+5v, .Sazg%
s¢=Ac+pa+ Sy, €= aaév (73)

where v denotes the unit surface normal, p
an arbitrary pressure due to the assumed in-
compressibility, f an arbitrary vector aris-
ing from the constraint (Eq. 69), and o, A
and u arbitrary scalars stemming from the
constraints (Eq. 70). In addition one obtains
the balance laws

F—grad p—Va' (curl f) +div T* =0

aw
0a

div§c—%+G"+1c+Ka=0

div §7~ +G%+ya+xkc+curl f=0

74)

% xand tbeing arbitrary scalars again aris-
ing from the constrains (Eq. 70). The first
of equations (Eq. 74) is clearly the point
form of the balance of forces, the first of
equations (Eq. 71), and the remaining two
are equivalent to the second of (Eq. 71) rep-
resenting balance of moments, this requir-
ing the generalization of the identity
(Eq. 12). Also one can show that the surface
moment € is given by

aW
€=(fayw—(a v)ﬁ+a><aV
ow
+Cxa—VEV (75)

this combining Eqgs. (72) and (73).



If external forces and moments are ab-
sent, it is possible to combine equations (Eq.
74) to obtain the integral

p+W=p, (76)

where p, is an arbitrary constant pressure.
With certain restrictions on the external
body force and moment, a similar result fol-
lows when these terms are present. Hence
as for a nematic, the balance of forces need
not concern us except possibly to compute
surface forces, and we therefore have two
Euler-Lagrange type equations represent-
ing balance of moments.

Boundary conditions for the above theory
tend to be very similar to those employed in
nematics, with little so far emerging by way
of genuine smectic boundary conditions.

1.4 Dynamic Theory for
Nematics

1.4.1 Balance Laws

To derive a dynamic theory one can of
course extend the above formulation of
equilibrium theory employing generalized
body and surface forces as in the initial
derivation [7,15]. Here, however, we prefer
a different approach [46], which, besides
providing an alternative, is more direct in
that it follows traditional continuum me-
chanics more closely, although introducing
body and surface moments usually exclud-
ed, as well as a new kinematic variable to
describe alignment of the anisotropic axis.

As above we assume that the liquid crys-
tal is incompressible, and thus the velocity
vector v is subject to the constraint

divv=0 77)

with the result that conservation of mass re-
duces to the statement that the density p is
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constant in a homogeneous material. As be-
fore the director n is constrained to be of unit
magnitude. Since thermal effects are exclud-
ed, our two balance laws are those represent-
ing conservation of linear and angular mo-
mentum, which for a volume Vof liquid crys-
tal bounded by surface S take the forms

[ pvdv =[Fdv+[tds
dry, v s
d
i ‘J/pxxvdv
= [(xxF+K)dv+ [(xxt+€)ds  (78)
1% S

where F and K are body force and moment
per unit volume, t and € surface force and
moment per unit area, respectively, X the po-
sition vector, and the time derivative the ma-
terial time derivative. The inertial term as-
sociated with the director in the latter of
equations (Eq. 78) is omitted on the grounds
that it is negligible.

The force and moment on a surface with
unit normal v are given by

€=Lv (79)

where p is an arbitrary pressure arising from
the assumed incompressibility, and 7 and L
are the stress and couple stress matrices or
tensors, respectively. As a consequence one
can express (Eq. 78) in point form

t=—pv+1v,

pQ=F—gradp+divT,
dr -
0=K+T+divL (80)

where T is the axial vector associated with
the asymmetric matrix 7, so that

’fx = sz - Tyz* fv = sz - TU’

fz = Tyx - Txy’ (81)
and the divergence is with respect to the sec-
ond index of both 7 and L. Finally we re-
mark that for isotropic liquids K and L are

generally assumed to be absent, so that an-
gular momentum reduces to T being zero,
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or equivalently that the stress matrix T is
symmetric.

1.4.2 A Rate of Work Hypothesis

Somewhat analogous to our earlier princi-
ple of virtual work, we here assume that the
rate of working of external forces and mo-
ments either goes into increasing the kinet-
ic and elastic energies, or is dissipated as
viscous dissipation. Thus for a volume V of
liquid crystal bounded by surface §

J(F-v+K-w)dv+ [(t-v+£w)ds
1% S

=ij(lpv-v+w)dv+j0dv (82)
dri\2 v

in which w denotes the local angular veloc-
ity, Wis the Frank—Oseen energy, and D rep-
resents the rate of viscous dissipation. With
the aid of equations (Eq. 79) the above can
be expressed in point form, and following
some simplification through use of equa-
tions (Eq. 80) one obtains

aw
dr
where the velocity and angular velocity gra-
dient matrices Vand W take the forms

_ av,» . &VL’
Y_[axj} W‘[ale

respectively.
Noting that the material time derivative
of the director n is given by

TV +r(LWT)—w-T=S24+D (83)

(84)

%n =wXxn (85)
and also that one can show that

d —y(dn)_

dt(Vn) = V( a4 ) \%\% (86)

it is possible by using the chain rule to ex-
press the material derivative of the energy
W in a form linear in the velocity gradients,

angular velocity gradients and the angular
velocity. Also by appeal to the identity
(Eq. 12), the resultant expression cancels
the contributions from the static terms on
the left hand side of (Eq. 83), given by
Eqgs. (20) and (22), and thus the rate of work
postulate reduces to

TV + tr( LW -w-T?=D >0 (87)

the superscript d denoting dynamic contri-
butions, and noting that the rate of viscous
dissipation is necessarily positive. Alterna-
tively of course one can argue from the lin-
earity of these terms in the velocity and an-
gular velocity gradients that the static con-
tributions are indeed given by our earlier ex-
pressions.

To complete our dynamic theory, it is nec-
essary to prescribe forms for the dynamic
stress and couple stress. The simplest choice
consistent with known effects appears to be
that at a material point

T and L? are functions of V, n and w (88)

all evaluated at that point at the given in-
stant. However, since dependence upon the
gradients of the angular velocity is exclud-
ed, it follows at once from the inequality
(Eq. 87), given that these gradients occur

linearly, that
L4=0 (89)

in agreement with the earlier formulation
[7]. Hence the rate of viscous dissipation in-

equality reduces to
D=tr(TV"-w-T>0 (90)

which we employ below to limit viscous co-
efficients.

1.4.3 The Viscous Stress

Invariance at once requires that the assump-
tion (Eq. 88) for the dynamic part of the



stress matrix be replaced by
T is a function of A, n and @ “n

all evaluated at that point at that instant, where
— T _ 1
2A=V+V", w—w—zcurlv (92)

A being the familiar rate of strain tensor or
matrix, and o the angular velocity relative
to the background rotation of the continu-
um. While it is possible to derive the vis-
cous stress from the above assumption [46],
we opt here for a more direct approach, and
replace (Eq. 91) by

T<is a function of A, n and N (93)

all evaluated at that point at that instant,
where using (Eq. 85)

_ _d 1 T
N=wxn= a3 (V=V5)n 94)
this restricting the dependence upon the rel-
ative rotation, essentially discounting the
component parallel to the director n, which
can be shown to be zero in any event [46].

Nematic symmetry requires that (Eq. 93)
be an isotropic function and independent of
a change of sign in the director n. Thus as-
suming a linear dependence upon A and N
one finds that

T¢=omn-Ann *n + N * n + ogn * N
+ oA+ dsAn = n + ogn * An,  (95)

where again axb denotes the matrix with
(i, )" element a; b;, and the os are constants.
Ignoring thermal effects, the above is also
the form that one obtains for cholesterics or
chiral nematics.

Somewhat straightforwardly it follows

from the above that
T¢=nxg (96)
where the vector g takes the form

g =_YIN - ’}/ZAn’
i=03-0, PH=0-05 7
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Also employing Eqs. (92), (94) and (96) the
viscous dissipation inequality (Eq. 90) be-
comes

D=i(Th) -0 -T=t(T"4)-g -N>0
(98)
The above of course restricts possible val-

ues for the viscous coefficients and one can
readily deduce from it that [47]

0y >0, 204+ 05+ 0g>0, 99)
30+ 205+ 20+ 20, > 0

7%>0, (0p+ 05+ ) <47(2ay + 05 + o)

the calculation aided by choosing axes par-
allel to n and N. However, in many cases it
proves simpler to deduce consequences of
(Eq. 98) by writing down the dissipation
function for the particular flow under con-
sideration, rather than try to derive results
from the above inequalities.

By invoking Onsager relations, Parodi
[48] argues that one restrict the viscous co-
efficients to satisfy the relationship

=053+ 0 (100)

but subsequently Currie [49] shows that this
relationship also follows as a result of a
stability argument. As a consequence this
condition between the viscous coefficients
isnow generally accepted, and leads to some
simplification in the use of the theory. For
example, when (Eq. 100) holds, Ericksen
[21] shows that the viscous stress and the
vector g follow directly from the dissipation
function D through

results that we require below.

1.4.4 Equations of Motion

If one combines the Egs. (20), (22), (79),
(89) and (96), it is possible to express the
balance law for angular moment, the second
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of equations (Eq. 80) in the form

nx(divgs w +G+g) (102)
this involving some manipulation and the
use of the identity (Eq. 12), a result perhaps
more easily derived employing Cartesian
tensor notation. Equivalently (Eq. 102) be-
comes

aw
on

a rather natural extension of the second of
equations (Eq. 23) given the result (Eq. §9).
With angular momentum in this form one
can simplify the balance law for linear mo-
ment, the first of equations (Eq. 80), in a
manner rather similar to the derivation of
(Eq. 32) to give

divs*-2% + G+g=yn (103)

p dv =F+Vn'G-grad(p+W)

+VnTg+divr? (104)

Further, if the body force and moment sat-
isfy (Eq. 30), this last equation reduces to

p% =—grad p+ Vn' g+ div T4,

p=p+W-vy, (105)

which is clearly simpler than the original.

As in Section 1.2.4, if one introduces a
representation for the director n referred to
Cartesian axes that trivially satisfies the
constraint upon it, say

n=£(9,9), n-X=n%_g

a6 8¢ (106)

it also follows that (107)
of of of 5. of

Vn=3g" V0t 55" V0 =500 560

As before, if an external field satisfying
(Eq. 30) is present, one has

W = W(e’ ¢’ Ve’vq))’
D=2A(6,9,6,9,Vv),

(108)
v =x(x0,0)
0= dr’ ¢—
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and proceeding as earlier and noting that

0A_19D of 9A_13D o (g

96 20m 08’ 3¢ 20n 3¢

one can show that Egs. (103) and (105) can
be recast as

[(OW \_oW _ 0¥ A _
div (ave) 290 790 a6

OW | _ oW _dx oA _ 110
a (BW)J 0t ap 0 Y
and

¢
(111)

respectively, the divergence in the latter
with respect to the second index. As Erick-
sen [21] shows, it is possible to present the
above reformulation of the equations in
terms of curvilinear coordinates. However,
given our rather restrictive notation, an at-
tempt to summarise this here is more likely
to confuse than to enlighten, and therefore
we refer the interested reader to the original
paper.

Boundary conditions for dynamic theory
simply add the customary non-slip hypoth-
esis upon the velocity vector to the condi-
tions described above for static theory, with
only a very occasional reference to the in-
clusion of a surface viscosity for motions of
the director at a solid interface.

A |_0A dA
=— =V
pv gradp+d1v{aV] Y: =VO- ¢
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2 Molecular Theories of Liquid Crystals

Mikhail A. Osipov

2.1 Introduction

Molecular theories can provide important
additional information about the properties
and structure of liquid crystals because they
enable one to understand (at least partially
and in a simplified way) the onset of liquid
crystalline order at the microscopic level.
However, the development of arealistic mo-
lecular theory for liquid crystals appears to
be a challenging problem for two main rea-
sons. First, the intermolecular interaction
potentials are not known exactly. These po-
tentials are generally expected to be rather
complex reflecting the relatively complex
structure of typical mesogenic molecules.
Second, it is hardly possible to do good sta-
tistical mechanics with such complex poten-
tials evenif they are known. At present there
exists no regular method to calculate even
the pair correlation function for a simple an-
isotropic fluid and one has to rely on rather
crude approximations. The latter difficulty
can, in principle, be overcome by means
of computer simulations. Such simulations,
however, appear to be very time consuming
if realistic molecular models are employed.
Even in the case of simple potentials one
sometimes needs very Jarge systems (for ex-
ample, up to 8000 particles to simulate the

polar smectic phase with long-range di-
pole—dipole interactions [1]). On the other
hand, such simulations with realistic poten-
tials usually require extensive interpreta-
tion, as in the case of a real experiment. In
fact, one would have to make too many
simulations to trace a relation between the
features of the molecular structure and the
macroscopic parameters of liquid crystal
phases in an empirical way. Thus, in gener-
al, computer simulations are not a substitu-
tion for a molecular theory, but merely an
independent source of information. In par-
ticular, computer simulations provide a
unique tool for testing and generating vari-
ous approximations that are inevitably used
in any molecular theory.

Thus, the primary goal of a molecular the-
ory is to obtain a qualitative insight into the
molecular origin of various effects in liquid
crystals. First of all, it is important to under-
stand which properties of liquid crystals are
actually determined by some basic and sim-
ple characteristics of molecular structure
(like, for example, the elongated or disc-like
molecular shape or the polarizability aniso-
tropy), and which properties are particular-
ly sensitive to the details of molecular struc-
ture, including flexibility, biaxiality or even
the location of particular elements of struc-
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ture. In this short chapter we will not be able
to address all of these questions. However,
we make an attempt to present the basics of
the molecular theory of the nematic and sim-
ple smectic phases. We will also provide
some additional references for a reader with
more specific interests.

We start with the microscopic definitions
and discussion of the nematic and smectic
order parameters and then proceed with
some elementary information about aniso-
tropic intermolecular interactions in liquid
crystals. Then we discuss in more detail the
main molecular theories of the nematic—
isotropic phase transition and conclude with
a consideration of molecular models for
smectic A and smectic C phases.

2.2 Microscopic Definition
of the Order Parameters for
Nematic and Smectic Phases

2.2.1 Uniaxial Nematic Phase

The uniaxial nematic phase possesses a
quadrupole-type symmetry and is character-
ized by the order parameter Q,g which is a
symmetric traceless second-rank tensor:

Oup =g ~38.5) 0

where the unit vector n is the director that
specifies the preferred orientation of the pri-
mary molecular axes. We note that the cor-
responding macroscopic axis is nonpolar
and therefore it is better represented by the
quadratic combination n,ng. The quantity S
is the scalar order parameter that charac-
terizes the degree of nematic ordering.
From the microscopic point of view the
orientation of arigid molecule i can be spec-

ified by the unit vectors a; and b, in the di-
rection of long and short molecular axes, re-
spectively; (a; - b;)=0. It should be noted
that the definition of the primary molecular
axis is somewhat arbitrary for a molecule
without symmetry elements. Sometimes the
axis a; is taken along the main axis of the
molecular inertia tensor. However, in many
cases it is quite difficult to know beforehand
which molecular axis will actually be or-
dered along the director. This can be a par-
ticularly difficult problem for a guest mole-
cule in a nematic host [2].

Here we assume for simplicity that the
primary axis is well defined. Then the sca-
lar order parameter is given by the average

S=(P((a;-b))) )

where P,(x) is the second Legendre poly-
nomial and the brackets (...) denote the
statistical averaging.

We note that the averaging in Eq. (2) is
performed with the one-particle distribution
function f;((a - n)) that determines the
probability of finding a molecule with'a
given orientation of the long axis at a given
point in space. In the uniaxial nematic phase
the distribution function depends only on
the angle @ between the long axis and the
director. Then Eq. (2) can be rewritten as

S:%jli(cosa))f](cosw)dcosa) (3)

In mixtures of liquid crystals, the molecules
of different components may possess dif-
ferent degrees of nematic ordering. In this
case the nematic order parameters, S, for
different components « are calculated
separately using different distribution func-
tions f, (cos ).

The definition of the order parameter (Eq.
2) is not entirely complete because one has
to know the orientation of the director. In
the general case the director appears self-
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consistently as a result of the breakdown of
symmetry during the phase transition and
sometimes its orientation is unknown be-
forehand (as, for example, in simulations).
Thus, from the theoretical point of view it
is more consistent to define directly the ten-
sor order parameter as a true thermodynam-
ic average:

Oup = <aa ag - %6aﬁ> = S(na ng - %506[,) @)

where the order parameter § is given by
Eq. (2).

The molecular statistical definition of the
order parameter can be clarified if one con-
siders, for example, the magnetic suscepti-
bility of the nematic phase. The anisotropic
part of the susceptibility tensor y,z can be
considered as an order parameter [3] be-
cause it vanishes in the isotropic phase and
is nonzero in the nematic phase. In addition,
the macroscopic magnetic susceptibility can
be written as a sum of contributions from in-
dividual molecules:

Xop=PX{X0p) (5)

where )(% is the molecular susceptibility
tensor and p is the number density.

Equation (4) is valid with high accuracy
because induced magnetic dipoles interact
only weakly. By contrast, interaction be-
tween the induced electric dipoles is strong
and produces substantial local field effects
which do not allow one to express the di-
electric permittivity of the nematic phase in
terms of the molecular parameters in a sim-
ple way (see, for example, [4]).

The molecular susceptibility x&% can be
diagonalized:

Xop = X11babg + X2z cacp+ x33agag (6)

where the orthogonal unit vectors a, b and
¢ are the principal axes.

Now we have to average Eq. (5) to get the
expression for the order parameter. In the
nematic phase the orientational distribution
function depends only on the primary mo-
lecular axis a. Thus the two short axes b and
¢ are completely equivalent in the statistical
sense and one obtains

{buby)={cucp) =5 (8ap ~{awag))

where we have used the general relation
6aﬁ =dg ag + ba b.B Ca CB

Finally the macroscopic magnetic suscepti-
bility can be expressed as

Xop = Zaaﬁ +Ay <aa ag — %6¢x[3> (8)

where ¥=p(x;:+X22+ X33) 1s the average
susceptibility and Ay=p(¥33—(X11+X22)/2)
is the anisotropy of the susceptibility.

One can readily see from Eq. (7) that the
traceless part of the average magnetic sus-
ceptibility is proportional to the nematic
tensor order parameter Q3 givenby Eq. (3).

2.2.2 Biaxial Nematic Phase

Biaxial nematic ordering has been observed
so far only in lyotropic systems. At the same
time tilted smectic phases are also biaxial
and thus the expressions presented in this
section can be of more general use.

In the biaxial nematic phase it is possible
to define two orthogonal directors n and m.
In this case the magnetic susceptibility ten-
sor can be rewritten as

Xop =X Oap+ A% Oop + AX1L Byg )

where Ay, =p(¥;1—X2>) is the transverse
anisotropy of the molecular susceptibility
that represents biaxiality, and where

Bop ={(berbp — o c5)) (10)
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Now the traceless part of the magnetic sus-
ceptibility is a sum of two terms proportion-
al to two tensor order parameters of the bi-
axial nematic phase: Q,g and Bgg.

In the uniaxial nematic phase B,3=0 and
the tensor order parameter Q4 is uniaxial.
By contrast, in the biaxial phase the order
parameter Q5 can be written as a sum of a
uniaxial and a biaxial part:

1
Qxﬁ = S(I’la nﬂ - 560,/3)

+AQ (g mg — Iy Ig) (11)

where the unit vector I=[nxm] and where
§ is the largest eigenvalue of the tensor Qg
(for prolate moleculies).

The parameters S and AQ can be ex-
pressed as [8]

S=(B(@a-n)) (12)

80=3((B (@ m)~(A(@D) a3

The tensor order parameter B,g can be ex-
pressed in the same general form as Q,4:

Bys =S (na ng =1 6aﬂ)

+D (g, mg — I zﬁ) (14)
where
§'=(B(®-m))~(B(cm) (15)

D=L (B (@ -m)~(A(b-1))
+(B((c-m))~ (P ((c-D))) (16)

Here the parameter S” characterizes the ten-
dency of the molecular short axes to be
ordered along the main director n and the
parameter AQ describes the ordering of
the primary axis @ along the director m.
In the case of perfect ordering of the pri-
mary molecular axes (S=1) the parameter

§’=0, AQ=0 and the biaxial ordering in
the phase is described by the parameter
Baﬁ:D(mamﬁ—lalﬁ).

2.2.3 Smectic A and C Phases

Smectic ordering in liquid crystals is usual-
ly characterized by the complex order pa-
rameter p, ' introduced by de Gennes [3].
Here p,=(cos(q - r)) is the amplitude of the
density wave, ¥ is the phase and ¢ is the
wave vector. This order parameter appears
naturally in the Fourier expansion of the
one-particle density p(r).

The order parameter of the SmC phase
appears to be more complex because in this
phase the director is not parallel to the wave
vector ¢. In a simple case, it is just possible
to use the tilt angle @ as an order parame-
ter. However, this parameter does not spec-
ify the direction of the tilt and thus it is anal-
ogous to the scalar nematic order parameter
S. The full tensor order parameter of the
SmC phase can be constructed in several dif-
ferent ways. One is to define the pseudo-
vector w [8, 9] that describes the rotation of
the director with respect to the smectic plane
normal:

Wo = 5aﬁy Qpy qu 4v (17)

where 6,4, is the Levi-Civita antisymmet-
ric tensor, § is the unit vector along ¢ and
Oas is the (biaxial) nematic order parame-
ter.

The pseudo vector order parameter w
vanishes in the SmA phase. If we neglect the
biaxiality of the SmC phase, the order pa-
rameter Qg is expressed in terms of the di-
rector n and the vector order parameter
(Eq. 16) is simplified:

w=(n-g)lnxq] (18)

We note that the vector w is perpendicular
to the tilt plane in the SmC phase and the
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absolute value of w is related to the tilt an-
gle, w=sin2@/2~0O at small @*<1. This
pseudo vector order parameter can be used
both in the theory of nonchiral and chiral
SmC phases [8, 9].

2.3 Anisotropic
Intermolecular Interactions
in Liquid Crystals

2.3.1 Hard-core Repulsion

Liquid crystals are composed of relatively
large molecules with strongly anisotropic
shapes. In general, there exist a number of
anisotropic interactions between such mole-
cules that can be responsible for the nemat-
ic ordering. Historically the first consistent
molecular theory of the nematic phase was
proposed by Onsager [10]. Onsager showed
that the nematic ordering can be stabilized
by the hard-core repulsion between rigid
rod-like molecules without any attraction
forces. The steric repulsion between rigid
particles is a limiting case of a strong short-
range repulsion interaction that does not al-
low molecules to penetrate each other. The
corresponding model interaction potential
is discontinuous and can be written as

Vi(1,2)=Q(r2 - &12) (19)

where (2(x) is a step function,
Q(r),—&,)=00 if r|,<&,, and thus the
molecules penetrate each other; otherwise
Q(ry,—&,,)=0. Here &, is the minimum
distance of approach between the centers of
the molecules 1 and 2 for a given relative
orientation. The function &, , is determined
by the molecular shape and depends on the
relative orientation of the two molecules.
For hard spheres &, ,=D where D is the di-
ameter of the sphere. For any two prolate

molecules, &, , varies between the diameter
D and the length L.

2.3.2 Electrostatic and
Dispersion Interactions

Hard-core repulsion between anisotropic
molecules, discussed in the previous sub-
section, can be the driving force of the I-N
transition in lyotropic systems. In contrast,
in thermotropic liquid crystals the transition
occurs at some particular temperature and
therefore some attraction interaction must
be involved. The corresponding molecular
theory, based on anisotropic dispersion
interactions, was proposed by Maier and
Saupe [11, 12].

The dispersion (or Van der Waals) inter-
action appears in the second-order perturba-
tion theory. The initial interaction potential
is the electrostatic one. For the two mole-
cules i and j the electrostatic interaction en-
ergy can be written as

e(re(r;)

dridr
_R] +ri_rj‘

Va(1,2)=]] R, ;o (20)

where e (r,) is the charge distribution of the
molecule i and R; is the position of the cen-
ter of mass.

The electrostatic interaction can be ex-
panded in terms of molecular multipoles.
For neutral molecules one obtains
1 1 @h
Ver(i, /) = —5 Uaa (i, ) + —7 Ugq (i, j) + ...
where the first term is the dipole-dipole
interaction potential

Uga G, ) = (ﬁi : ﬁj) - 3([11' 'uij)(ﬁj 'uij) (22)

and the second term is the dipole—quadru-
pole interaction energy

Usq G j)=Ul, ~ U, (23)
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where
qu=%Tl"Qj (,ﬂ,uu)+3(ﬁ,Qj -u,-j)

_%(ﬁi'Qj'.ai)(ﬂi'uij) (24)

and where UJ, is obtained by permutation
of the indicesiandjin Eq. (23). Here R;;=R,
—R; is the intermolecular vector, y; is the
molecular dipole and Q; is the molecular
quadrupole tensor, u;=R;/[R|.

The dispersion interaction energy is ob-
tained in the second-order perturbation the-
ory:

’

%isp (i,))= Z (25)
ni,nj
'<_010j'Ve1 (i, )n; ”j><”i nj| Va (i, j)o; 0j>
Eoioj _Eninj

where |0,-) and |n,-) represent the ground
state and the excited state of the molecule i,
respectively and E,,;,;~ E,,;,,; 18 the excitation
energy of the system.

Substituting the multipole expansion
(Eq. 20) into Eq. (24) and taking into ac-
count the leading term (that contains r[jﬁ)
one obtains

ninj

Vi (i) = 3. (26)
Tij ninj
' <0i 0j|Usq (i, )l nj> <”i n;|Uga (s ) 0; 0j>
Eoioj - Eninj

where Ugyy (i, j) is given by Eq. (21).

We note that the full dispersion interac-
tion energy (Eq. 24) can be approximated to
by the dipole—dipole term (Eq. 25) only if
the molecules are sufficiently far apart.
However, Eq. (25) is often used in molecu-
lar theories of liquid crystals to draw qual-
itative conclusions. For example, the poten-
tial (Eq. 25) has been used in the Maier—
Saupe theory.

The dipole—dipole dispersion interaction
can be simplified if we assume that the

molecular short axes are oriented randomly
around the long axes a; and a;. Then it is
valid to average the potential (Eq. 25) over
all b; and b; with the constraints (b, - a;)=0,
(b; - @;)=0. It can be shown that the averag-
ing results in the following expression for
the effective uniaxial potential [13, 14]:

Verr (ai»uij;aj)

= const — J; (ai u; )2 -J; (aj ~u,-j)2
- JU[(”!’ -a;)~(a; u;)a; ‘"ij)]z 27

Here the coefficients can be expressed in
terms of the electric dipole and quadrupole
matrix elements [13, 14].

In the nematic phase there is no position-
al order and the molecular centers are dis-
tributed randomly. If one neglects the posi-
tional correlations, the interaction potential
(Eq. 26) can be further simplified by aver-
aging over all directions of the intermolec-
ular vector. The resulting effective potential
appears to be very simple:

Verr(ar-0,)) = — o B (0o B (4 -a)
(28)

where A« is the anisotropy of the molecu-
lar polarizability and F is the average exci-
tation energy.

Equation (27) presents a simple aniso-
tropic attraction potential that favors nemat-
ic ordering. This potential has been used in
the original Maier—Saupe theory [11, 12].
We note that the interaction energy (Eq. 27)
is proportional to the anisotropy of the mo-
lecular polarizability Aa. Thus, this aniso-
tropic interaction is expected to be very
weak for molecules with low dielectric an-
isotropy. Such molecules, therefore, are not
supposed to form the nematic phase. This
conclusion, however, is in conflict with ex-
perimental results. Indeed, there exist a
number of materials (for example, cyclo-
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hexylcyclohexanes [15]) which form the ne-
matic phase but exhibit very small anisotro-
py of the polarizability. This is an indication
that anisotropic dispersion forces do not
make the major contribution to the stabil-
ization of the nematic phase. On the other
hand, the well known success of the Maier—
Saupe theory (as discussed below) is main-
ly determined by its mathematical form and
not by the particular intermolecular interac-
tion that has been taken into account.

As shown by Gelbart and Gelbart [16],
the predominant orientational interaction in
nematics must be the isotropic dispersion at-
traction modulated by the anisotropic mo-
lecular hard core. The isotropic part of the
dispersion interaction is generally larger
than the anisotropic part because it is pro-
portional to the average molecular polariz-
ability &. And the anisotropy of this effec-
tive potential comes from that of the asym-
metric molecular shape. Thus this effective
potential is a combination of intermolecular
attraction and repulsion. It can be written as

Ve (1,2) = Jo (112)O(r12 = &12) (29)

where the step-function @ (r,,-¢&,,) deter-
mines the steric cut-off. O(ry,-&,,)=0 if
the molecules penetrate each other (i.e. if
ri»<&;,) and O(r;,~&,,)=1 otherwise.
We note that Eq. (24) contains also the
induction interaction, that is the interaction
between the permanent multipoles of the
molecule i and the polarizability of the
molecule j. This interaction corresponds to
the terms with n,=0 or n;=0. The induction
interaction can play an important role if the
molecular hard core is strongly polar [18].
Electrostatic interactions between mole-
cules with permanent electric multipoles are
also strongly anisotropic. The correspond-
ing interaction potentials, however, vanish
after the integration over the intermolecular
vector r;; and thus they do not contribute in

the mean-field approximation. The dipole—
dipole and dipole—quadrupole potentials
vanish also after an orientational averaging
because they are polar. At the same time, the
electrostatic interactions can be very impor-
tant if the molecules possess large perma-
nent dipoles. In this case the dipole—dipole
interaction gives rise to strong short-range
dipolar correlations including the formation
of dimers with antiparallel dipoles. At
present the statistical theory of strongly po-
lar nematics is in its early stage (see, how-
ever, [6, 7]).

2.3.3 Model Potentials

Realistic intermolecular interaction poten-
tials for mesogenic molecules can be very
complex and are generally unknown. At the
same time molecular theories are often
based on simple model potentials. This is
justified when the theory is used to describe
some general properties of liquid crystal
phases that are not sensitive to the details on
the interaction. Model potentials are con-
structed in order to represent only the qual-
itative mathematical form of the actual
interaction energy in the simplest possible
way. It is interesting to note that most of the
popular model potentials correspond to the
first terms in various expansion series. For
example, the well known Maier-Saupe po-
tential JP, ((a; - r)) is just the first nonpolar
term in the Legendre polynomial expansion
of an arbitrary interaction potential between
two uniaxial molecules, averaged over the
intermolecular vector r;:

V(@ a))=dry V(s ry.a)
=so+haB((ara))+ (a0,

where we have taken into account only non-

polar terms. Here V(a;, r;, a;) is an arbitrary
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interaction potential between two uniaxial
rigid molecules. It depends only on the long
axes a;, a; and on the intermolecular vector
r.

The partially averaged potential (Eq. 29)
can be used in the molecular theory of the
nematic—isotropic transition (also being
supplemented by the P, term [19]). Howev-
er, several other properties of nematics
cannot be described in this way. For exam-
ple, the full anisotropy of the Frank elastic
constants can be accounted for only tak-
ing into account the explicit dependence of
the interaction potential on the intermolec-
ular vector [20]. In this case appropriate
model potentials can be obtained using
some more general expansion of the full po-
tential V(a;, r;, a;). This potential can be
expanded in terms of the spherical invari-
ants

V(ai,rij,aj) =Y J,mk(rij) Tl'”k(a,-,u,-j,aj)
Im.k (31)

The set (7" (a;, u;, a;)) is a complete or-
thogonal set of basis functions [86] that con-
tain the vector a, to the power /, the vector
u; to the power m and the vector a; to the
power k. The explicit expressions for the
lower order invariants have been given, for
example, by Van der Meer [14]. The invar-
iants with one zero index are just Legendre
polynomials. For example 7°%%(a,, u i @)=
P, ((a; - a)).

The invariants with /+ m + k odd are pseu-
doscalars and therefore the corresponding
coupling constants J [’"k(r,-j) are pseudosca-
lars as well. These terms can appear only in
the interaction potential between chiral
molecules. The first nonpolar chiral term of
the general expansion (Eq. 30) reads:

V*(a,-,rij,aj): J*(r,-j)([ai xaj]~r,j) (32)

The potential (Eq. 31) promotes the twist of
the long axes of neighboring molecules and

is widely used in the statistical theory of
cholesteric ordering [13].

Finally we note that there exist some spe-
cial model potentials that combine an attrac-
tion at large separation and repulsion at
short distances. The most popular potential
of this kind is the Gay—Berne potential [22]
which is a generalization of the Lennard—
Jones potential for anisotropic particles.
The Gay—Berne potential is very often used
in computer simulations but not in the
molecular theory because it is rather com-
plex.

2.4 Molecular Theory
of the Nematic Phase

2.4.1 Mean-field
Approximation and the
Maier—Saupe Theory

The simplest molecular theory of the nemat-
ic~isotropic (N-I) transition can be devel-
oped in the mean-field approximation. Ac-
cording to the general definition, in the
mean-field approximation one neglects all
correlations between different molecules.
This is obviously a crude and unrealistic ap-
proximation but, on the other hand, it en-
ables one to obtain very simple and useful
expressions for the free energy. This approx-
imation also appears to be sufficient for a
qualitative description of the N—I transition.
More precise and detailed theories of the ne-
matic state are based on more elaborate sta-
tistical models that will be discussed brief-
ly in Sec. 2.4.3.

In the language of statistical mechanics
the mean-field approximation is equivalent
to the assumption that the pair distribution
function f;(1, 2) can be represented as a
product of the two one-particle distribu-
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tions, that is f,=f,(1) f2(2). The same rep-
resentation is applied also to all n-particle
distribution functions. This definition can
be used to derive the mean-field expression
for the free energy.

We note that the general Gibbs expres-
sion for the free energy F can be written in
terms of the N-particle distribution function
fv=Z"'exp(~H/kT) in the following way:

F=[Hfydl —kT [ fy In fydI’ (33)
where H is the Hamiltonian of the system
and d 7 denotes the integration over all mi-
croscopic variables. On the level of pair
interactions the Hamiltonian H can be rep-
resented as a sum of the kinetic energy plus
the sum of interaction potentials for all mo-
lecular pairs

H=Y E+YV{j)
i ij

(34)

In the mean-field approximation the N-par-
ticle distribution is factorized as fy, =11, f; (i)
and the general expression (Eq.32) is
reduced to the following mean-field free
energy (in the absence of the external
field):

F = const
+ %Pz [V{i,0,.r) fi(@r:)
-ﬁ(a)j,rj)dw,-da)jdridrj
+ PkT [ fi(@;.r;) - In f; (@;.r;)da; dr,

(35)

where ; specifies the orientation of the
moleculei. In Eq. (34) the free energy is rep-
resented as a functional of the one particle
distribution function f, (7). The equilibrium
distribution is determined by minimization
of the free energy (Eq. 34):

fi(wi’ri) = % eXp[—ﬂp _[V(a),-,r,-j,a)j)

-fl(wj,r,-)dwjdrj] (36)

where

Z=jexp[—[3p_[V(a),-,r,~j,a)j)
-ﬁ(wj,rj)dwjdrj]dw,-dr,- (37

It should be noted that Eqs. (35) and (36) are
rather general and not restricted to the ne-
matic phase. The distribution function f; (i)
depends on the position r;; therefore it can
describe the molecular distribution in smec-
tic phases as well.

In the nematic phase there is no position-
al order and the distribution function f; (i)
depends only on the molecular orientation.
In this case Eq. (35) can be simplified:

filwy)= % exp[~BUwir ()]

(38)
where the mean-field potential Uyg (@) is
given by

Unr () = [V(01,0,) fi (02)do, (39)
Here the effective pair potential f/((ol, w,)
reads:

V(a)l,COQ):J.U((Ul,rlz,wz)drlz (40)
One can readily see from Eq. (37) that in the
mean field approximation each molecule
feels some average mean-field potential
produced by other molecules. This mean-
field potential is just the pair interaction en-
ergy averaged over the position and orien-
tation of the second molecule.

It is important to note that the mathemat-
ical form of Eqs. (37) and (38) appears to be
rather general and goes far beyond the
mean-field approximation. In fact, the one-
particle distribution can always be written
in the form of Eq. (37) with some unknown
one-particle potential. In several advanced
statistical theories this effective potential
can be explicitly expressed in terms of the
correlation functions. For example, such an
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expression can be obtained in the density
functional theory discussed in Sec. 2.4.4.

The mean-field approximation was orig-
inally developed to describe lattice systems
like ferromagnetics or ferroelectric crystals.
In the case of liquids, however, some for-
mal problems arise. In Eq. (39) the integral
over r;, diverges because any attraction
interaction diverges if the molecules are al-
lowed to penetrate each other. The obvious
solution to this problem is to take into ac-
count the hard-core repulsion that restricts
the minimum distance between attraction
centers. This can be done by introducing a
steric cut-off into the integral in Eq. (39).
Then the attraction potential is substituted
by the effective potential V_;(1,2)=
V(1,2) O(r1,—-& ) where O(r3-;5) is
a step-function (see Eq. 29). We note how-
ever, that the introduction of a steric cut-off
is equivalent to taking account of simple
short-range steric correlations. These corre-
lations also give rise to the additional con-
tribution to the free energy that is called
packing entropy. This entropy is discussed
in detail in Sec. 2.4.2.

If one neglects the asymmetry of the mo-
lecular shape (i.e. puts the function &, ,=D=
const in the effective potential) and uses the
dipole—dipole dispersion interaction poten-
tial (Eq. 27), one arrives at the Maier—Saupe
theory. In this theory the interaction poten-
tial contains only the P, ((a, - a,)) term and
as a result it is possible to obtain the closed
equation for the nematic order parameter S.
Substituting the potential V(1, 2)=—J(ry,)
P,((a, - a,)) ©O(r;,—D) into Eqgs. (27-29),
multiplying both sides of Eq.(27) by
P,((a, - a,)) and integrating over a,, we
obtain the equation
S= 1 JPZ (cos®)

Zy
dcos@

-exp[% SPz(cos@)} “1)

where cos@zga - n) and the dimensionless
temperature T=kT/J, where Jo=[3J(r)
r2dr.

The free energy of the nematic phase can
be written in the form

1

F=§pZJOS2—kT

-In [exp |:—7€ sp, (cos@)} @ (42)

Equations (40) and (41) describe the first
order nematic—isotropic transition. At high
temperatures Eq. (40) has only the isotrop-
ic solution §=0. At T=0.223 two other so-
lutions appear. One of them is always un-
stable but the other one does correspond to
the minimum of the free energy F and char-
acterizes the nematic phase. The actual ne-
matic—isotropic phase transition takes place
when the free energy of the nematic phase
becomes equal to that of the isotropic phase.
This happens at 7= Ty_;~0.220. At the tran-
sition temperature the order parameter
§=0.44.

Finally, the isotropic solution loses its
stability at T=0.2 and below this tempera-
ture there exists only the nematic stable so-
lution. Thus, T=0.223 is the upper limit of
metastability of the nematic phase and
T=0.2 is the lower limit of metastability of
the isotropic phase.

The remarkable feature of the Maier—
Saupe theory lies in its simplicity and uni-
versality. In particular, the temperature vari-
ation of the order parameter and its value at
the transition point are predicted to be uni-
versal, that is independent of intermolecu-
lar forces and the molecular structure. This
prediction appears to be supported by ex-
periments. In Fig. 1 the results of the theo-
ry are compared with some experimental
data for the parameter S presented by
Luckhurst et al. [23]. One can see that the
agreement is surprisingly good taking into
account the number of approximations and
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Figure 1. The teraperature dependence
of the order parameter .S, at constant
pressure, for 4,4’-dimethoxyazobenzene
(@), 4,4’-diethoxyazobenzene (A), anis-
- aldazine (A), 2,4-nonadienoic acid

(m) and 2,4-undecadienoic acid (0). The
curve is predicted by the Maier—Saupe
theory (after Luckhurst [23]).

simplifications involved in the Maier—Saupe
theory.

It should be noted, however, that the
agreement between the Maier—Saupe theo-
ry and experiment is not so good if one con-
siders some other parameters of the N-I
transition. For example, the discontinuity in
entropy is overestimated several times. In
particular, the difference between the tran-
sition temperature Ty_; and the lower limit
of stability of the isotropic phase T%* is
strongly overestimated. In the Maier—Saupe
theory the parameter y=(Tn_—T*)/Tn_ 1S
about 0.1 while experimentally Ty_;—7T* =
1-2C and therefore y~ (3-6)107>. This
means that the mean-field theory overesti-
mates the difference between the isotropic
and the nematic phase. The discrepancy is
clearly related to the neglect of short-range
orientational correlations between aniso-
tropic molecules that make the local struc-
ture rather similar in both phases.

The more serious problem in the original
Maier—Saupe theory is related to the choice
of the anisotropic dispersion interaction po-
tential (Eq. 27) (see the detailed discussion

100

in [24]). An estimate of the transition tem-
perature Ty_y yields the value that is an or-
der of magnitude too small [24, 25]. More-
over, there exist materials (for example,
cyclohexylcyclohexanes [15] or alkylbi-
cyclooctanes [24]) which possess very low
anisotropy of the molecular polarizability
but nevertheless form stable nematic phas-
es. These examples enable us to conclude
that anisotropic dispersion forces certainly
cannot be a dominant general mechanism of
the stabilization of the nematic phase.

It was first noticed by Gelbart and
Gelbart [16] that the predominant an-
isotropic interaction in nematics results
from a coupling between the isotropic
attraction and the anisotropic hard-core
repulsion. This coupling is represented by
the effective potential V 4(1, 2)=V(1, 2)
O(r,,—&;,). This potential can be averaged
over all orientations of the intermolecular
vector and then can be expanded in Le-
gendre polynomials. The first term of the
expansion has the same structure as the
Maier—Saupe potential J(r;,) P> ((a, - a;))
but with the coupling constant J determined
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by the anisotropy of the molecular shape and
the average molecular polarizability rather
than by the polarizability anisotropy. We
note that the particular interpretation of the
coupling constant J does not influence any
of the results of the Maier~Saupe theory ex-
cept for the absolute value of the transition
temperature. Thus, the success of the
Maier—Saupe theory is mainly determined
by its general mathematical structure and by
the form of the model! potential.

2.4.2 Short-range
Orientational Correlations

There are several ways to improve the
Maier—Saupe theory. One way is to take into
account the asymmetry of the molecular
shape and to account for the excluded vol-
ume effects. This approach will be discussed
in the next subsection. The second possible
way is to improve the statistical part of the
theory by taking into account some intermo-
lecular correlations. Finally, the third way
is to improve the model potential.

Strong short-range orientational correla-
tions can be conveniently taken into account
in the cluster approximation. The simplest
version of the cluster approximation in the
theory of liquid crystals was proposed by
Ypma et al. [26] who used the general ap-
proach of Callen and Strieb developed in the
theory of ferromagnetism.

In the two-particle cluster approximation
the interaction between two neighboring
molecules is taken into account exactly
while the interaction with the rest of the
nearest neighbors is treated in the mean-
field approximation. The two-particle Ha-
miltonian is written as

H,(1,2)=-JP((a-ay))
+ (1 —é 0[P ((a1-n))+ Py ((az- n))D (43)

where o is the number of nearest neighbors
and the parameter ¢ is the strength of the
mean-field which is to be determined in a
self-consistent way. The pair distribution
function is assumed to have the Boltzmann
form with the Hamiltonian (Eq. 42):

L1L2)= é exp[-BH, (1,2)] (44)

The one-particle distribution function is
given by the same type of expression as in
the mean-field theory:

£0)=exp[-poB(@m)] @3
1

The parameter ¢ is determined by the self-
consistency relation that states that the or-
der parameter S, calculated with the one-
particle distribution function (Eq. 44), must
be equal to the one calculated with the pair
distribution function (Eq. 43):

[Po(a;-n) fi(1)da; =

[P>((ar-n)) f,(1,2)da da, (46)
Finally from Eqgs. (42)~(45) one can obtain
the following simple expression for the free

energy

ﬁFz—%NO'InZZ “N@G-DInz (47

where
Z = _[exp[—ﬁquz ((a) -n))]dal
Z, = [exp[-BH,(1,2)]da, da, (48)

The self-consistency relation (Eq. 45) is ob-
tained by minimization of the free energy
(Eq. 46) with respect to ¢.

The use of a cluster approximation re-
duces the discrepancy between theory and
experiment. For example, the difference
Tn_—T*is reduced several times compared
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to the Maier—Saupe theory. A detailed com-
parison of different versions of the cluster
approximation with experimental data has
been given by Chandrasekhar [61].

Finally we note that it is possible to in-
clude the P,(cos @) term in the model po-
tential of the Maier—Saupe theory, as has
been done by Luckhurst etal. [19] and
Chandrasekhar and Madhusudana [28].
This procedure also leads to some quantita-
tive improvement.

2.4.3 Excluded Volume Effects
and the Onsager Theory

As discussed in the previous subsection, it
is important to take into account the exclud-
ed volume effects even in a simple mean-
field theory based on an anisotropic attrac-
tion interaction. The excluded volume ef-
fects are determined by hard-core repulsion
that does not allow molecules to penetrate
each other. It is interesting to note that by
doing so we already go beyond the formal
mean-field approximation. Indeed, with
excluded volume effects the internal energy
of the nematic phase can be written as

U=1 P [V L2K (1,2)
AW A@ADAQ) (49)

where hJ(1,2)=exp[-BV,(1,2)] is, in
fact, a simple correlation function bet-
ween the rigid molecules 1 and 2. Here V,
(1,2) is the steric repulsion potential
(Eq. 19).

Itis obvious that in this approximation we
do take into account some short-range
steric correlations between rigid molecules.
We note that these correlations contribute
not only to the internal energy but also
to the entropy of the nematic. Excluded
volume effects restrict the molecular mo-

tion and therefore the total entropy of the
fluid is reduced. This additional contribu-
tion to the entropy is called the packing en-
tropy.

A simple expression for the packing en-
tropy at low densities was first derived by
Onsager [10] who considered nematic or-
dering in a system of long rigid rods. In this
system the rods interact only sterically and
are supposed to be very long, L/D > 1, where
L is the length and D is the diameter of the
rod. At low densities it is possible to express
the free energy of such a system in the form
of the virial expansion:

BF=plnp+p
[ fi(@)[In £ (@)~ 1]day

+1p?[ fi(@n) fi (@) (50)
. B(col,a)2)da)1 d(O?_ +...

where B (®;, @) is the excluded volume for
the two rods:

B(wy,0,) = [dry (exp[-BV, (1,2)]-1) (51)

For two spherocylinders the excluded vol-
ume is expressed as

B(1,2)=2L*Djsiny;,|+2nLD* + % nd>
(52)

where 7, , is the angle between the long ax-
es of the two spherocylinders.

All terms in Eq. (49) are purely entropi-
cal in nature because the system is athermal.
The second term is the orientational entro-
py and the third one is the packing entropy
that is related to the second virial coefficient
for two rigid rods. The expansion in Eq. (49)
is actually performed in powers of the
packing fraction n=puvy~pipD?’L <1 if
L/D 1, where v, is the volume of a sphe-
rocylinder. At a very low volume fraction of
rods the higher order terms in the expansion
can be neglected [29].
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We note that the free energy (Eq. 49) has
the same general mathematical form as the
mean-field free energy (Eq. 34). In the gas
consisting of long rods, the role of the ef-
fective anisotropic potential is played by the
excluded volume B(a,, a,) multiplied by
kT. Thus it is not surprising that the mini-
mization of the free energy (Eq. 49) yields
practically the same equation for the orien-
tational distribution function as in the
Maier--Saupe theory:

Sil(arm)=5-
«exp[—l‘[ \sinylz)fl((ag n)) %} (53)

where /=2 pL*D~nL/xD.

From the mathematical point of view the
only difference between Eq. (52) and the
corresponding equation in the Maier—Saupe
theory is in the form of the effective inter-
action potential. In the Maier—Saupe theo-
ry the potential is —J P, (cos 7, ,) while in the
Onsager theory the potential has a different
form kT1]|sin ¥, ,| that also contains a sub-
stantial contribution from higher-order Le-
gendre polynomials. However, from the
physical standpoint the most important dif-
ference between the Maier—Saupe and the
Onsager theories is in the nature of the tran-
sition. Maier—Saupe theory describes the
N-1I transition in thermotropic liquid crys-
tals where the ordering appears at some par-
ticular temperature. By contrast, in the On-
sager theory the transition occurs when the
volume fraction of rods is increased. In
Eq. (52) the bifurcation point (pseudo-sec-
ond-order transition) corresponds to /=1
and thus the critical packing fraction ap-
pears to be of the order D/L, n=nD/L<1
if D/L<1. This is a crude estimate of the ac-
tual transition density. Therefore, in the case
of very long rods the transition takes place
at very low density. In the limiting case of
L/D — = the Onsager theory, which is based

on the virial expansion, appears to be
asymptotically exact [29].

The actual N-I transition for a gas con-
sisting of long rods is more complex because
the system separates into a dilute isotropic
phase and the more concentrated nematic
phase that already possesses a high degree
of orientational order. This is related to the
fact that the homogeneous system of long
rods appears to be mechanically unstable
(with respect to density fluctuations) with-
in some density interval around 7., =nD/L.
The two coexisting densities p; and p, can
be determined in the usual way by equating
the chemical potentials and the pressures of
the two phases:

(1) = t2(p2)
R(p)=B(p) 64

where the pressure P and the chemical po-
tential i can be expressed in terms of the
free energy in the following way:

JF d(FIV) F
P:—[w) =p -r (55)
NV Jrn ap

Vv
H= _(QEJ =p
IN ).y

Equations (53) and (54), supplemented by
Eq. (52) for the orientational distribution
function and Eq. (49) for the free energy,
can be used to determine the coexisting den-
sities and the value of the order parameter
at the transition. Eq. (52) was first solved
approximately by Onsager who used the
trial function

Jd(FIV)

%5 (56)

fi(cos@) = ( o ) cosh(acos®) (57)

4r sinh o

and thus reduced the integral Eq. (52) to the
equation for the single parameter . The ne-
matic order parameter S can be expressed in
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terms of « as

S=1-2coshor+- (58)
a o

Eq. (52) has been solved numerically by
Lasher [30] and Lekkerkerker et al. [31] by
employing the Legendre polynomial expan-
sion and by Lee and Meyer [32] by a direct
numerical method. The results do not differ
significantly from those obtained with the
Onsager trial function (Eq. 55) and there-
fore the approximation (Eq. 55) appears to
be sufficient for most practical purposes. A
more detailed description of the Onsager
theory and its generalizations can be found
in reviews [33—-36). Here we do not consid-
er it any more because this chapter is fo-
cused on the theory of thermotropic liquid
crystals. In this context the main conse-
quence of the Onsager approach is the con-
clusion that the excluded volume effects can
be very important in stabilizing the nemat-
ic phase. This is expected to be true also in
the case of thermotropic nematics because
they are also composed of molecules with
relatively rigid cores. Therefore, the pack-
ing entropy must be taken into account in
any consistent theory of the N-I transition.
We discuss this contribution in more detail
in the following subsection.

2.44 Packing Effects
in Thermotropic Nematics

The Onsager expression for the packing en-
tropy is valid at very low densities and the
theory can be applied directly to dilute so-
lutions of rigid particles like tobacco mosa-
ic virus or helical synthetic polypeptides. At
the same time typical thermotropic nemat-
ics are composed of molecules with an ax-
ial ratio of the order of 3 or 4 and the pack-
ing fraction is of the order of 1. Thus, the

direct use of the Onsager theory for such
systems can result in large errors. The On-
sager expression for the packing entropy has
been generalized to the case of condensed
nematic phases by several authors {37-40]
using different approximations. The corre-
sponding expression for the packing entro-
py can be written in the following general
way:

Sp==3 Ampks

'J.@(Vlz _512)f1 ((al ”))
- fi((@2 -n))da day dry (59)

Here the coefficient A(n) depends on the
packing fraction 1. In the Onsager theory,
which corresponds to the limit of small 7,
the factor A=1. The frequently used approx-
imations for the packing entropy have been
derived from the scaled particle theory [37]
and were proposed by Parsons and Lee [38,
41]. The equations of state derived from var-
ious molecular theories for a condensed so-
lution of hard rods are given in the review
of Sato and Teramoto [36]. One can readily
see that even for long rods with L/D =50 the
Onsager equation of state deviates signifi-
cantly from the results of the Parsons—Lee
or scaled particle theory already at relative-
ly small packing fractions 17 =0.3. We note
that recently the Parsons-Lee approxima-
tion has been tested by Jackson et al. [5] for
the system of relatively short spherocylin-
ders with axial ratios L/D=3 and L/D=5. It
has been shown that the results agree very
well with Parsons—Lee theory up to packing
fractions of 77=0.5. In the Parsons—Lee
approximation the function A(n) is written
in a simple form

_14-3n
4 (1-n)°

Taking into account the packing entropy
(Eq. 57), one can write the model free ener-

PL (60)
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gy for the nematic phase

FIV=kTp | fi((a;-n))
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where V. (1, 2) is the excluded volume for
the two rigid particles, V,, (1, 2) is the at-
traction interaction potential and gy (1, 2)
is the pair correlation function for the refer-
ence hard-core fluid.

For simplicity one can approximate the
pair correlation function by the steric cut-
off O(r;,—&,)=exp(-BV,(1, 2)). In this
case the free energy (Eq. 59) corresponds to
the so-called generalized Van der Waals the-
ory considered in detail by Gelbart and Bar-
boy [43, 44].

We note that in Eq. (59) the attraction
interaction is taken into account as a pertur-
bation. This means that one neglects a part
of the orientational correlations determined
by attraction. A simple way to improve the
theory is to combine Eq. (59) with the two-
particle cluster approach [40].

The first two terms in Eq. (59) represent
the free energy of the reference hard-core
fluid. The general structure of this reference
free energy is similar in different approach-
es but the particular dependence on the
packing fraction 1 can be quite different.
This depends on the particular approach
(used in the theory of hard-sphere fluids)
that has been generalized to the nematic
state. For example, the Parsons—Lee approx-
imation is based on the Carnahan—Starling
equation of state, the approach of Ypma and
Vertogen is a generalization of the Percus—
Yevick approximation and the approach of

Cotter is based on the scaled particle theo-
ry. The alternative way is to use the so-called
y-expansion of the hard-core free energy
proposed by Gelbart and Barboy [44]. This
is an expansion in powers of 1/(1-1) which
is much more reliable at high densities com-
pared with the usual virial expansion in
powers of 17. The y-expansion has also been
used by Mulder and Frenkel [51] in the inter-
pretation of the results of computer simula-
tions for a system of hard ellipsoids.

The free energy (Eq. 59) with some mod-
ifications has been used in the detailed de-
scription of the N-I transition by Gelbart
et al. [42, 43], Cotter [37] and Ypma and
Vertogen [40]. The work of Ypma and Ver-
togen also contains a critical comparison
with other approaches. One interesting con-
clusion of this analysis is related to the ef-
fective axial ratio of a mesogenic molecule.
It has been shown that a good agreement
with the experiment for the majority of the
parameters of the N-I transition can be
achieved only if one assumes that the effec-
tive geometrical anisotropy of the mesogen-
ic molecule is much smaller than its actual
value. This result has been interpreted in
terms of molecular clusters that are sup-
posed to be the building units of the nemat-
ic phase. The anisotropy of such a cluster is
assumed to be much smaller than that of a
single molecule. On the other hand, this re-
sult can be attributed to the quantitative in-
accuracy of the free energy (Eq. 59). Itis not
excluded that the theory based on Eq. (59)
overestimates a contribution from the ex-
cluded volume effects in thermotropic ne-
matics.

The same problem can be viewed in a dif-
ferent way. According to the results of com-
puter simulations [45] the nematic ordering
inan athermal system of elongated rigid par-
ticles is formed only if the axial ratio is more
than three. At the same time, the effective
value of L/D for typical mesogenic mole-
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cules is usually assumed to be more than
three. Thus, any dense fluid, composed of
such molecules, must be in the nematic
phase at all temperatures. In reality, howev-
er, some additional contribution from attrac-
tive forces is required to stabilize the nemat-
ic phase. As a result, we conclude that there
exists some very delicate balance between
repulsion and attraction in real thermotrop-
ic liquid crystals. The discrepancy from ex-
periment can also be related to molecular
flexibility; the anisotropy of the hard core
may not be sufficiently large to stabilize the
nematic phase. Thus, a fully consistent mo-
lecular theory of nematic liquid crystals
must take into account the molecular flex-
ibility in some way. This is a particularly
difficult problem and so far the flexibility
has been accounted for only in the context
of the generalized mean-field theory applied
separately to each small molecular fragment
(see the review of Luckhurst and referenc-
es therein [46]).

2.4.5 The Role
of Molecular Biaxiality

The majority of the existing molecular the-
ories of nematic liquid crystals are based on
simple uniaxial molecular models like sphe-
rocylinders. At the same time typical mes-
ogenic molecules are obviously biaxial.
(For example, the biaxiality of the phenyl
ring is determined by its breadth-to-thick-
ness ratio which is of the order of two.) If
this biaxiality is important, even a very good
statistical theory may result in a poor agree-
ment with experiment when the biaxiality is
ignored. Several authors have suggested
that even a small deviation from uniaxial
symmetry can account for important fea-
tures of the N—I transition [29, 42, 47, 48].

In the uniaxial nematic phase composed
of biaxial molecules the orientational distri-

bution function depends on the orientation
of both the molecular long axis a and the
short axis b, i.e. fi(1)=f,((a - n), (b - n)).
The influence of the biaxiality on the distri-
bution function is suitably described by the
order parameter D:

D=(R,((b-m))~(P((c-m))) (62)

which characterizes the difference in the
tendencies of the two short axes b and ¢ to
orient along the director. The order param-
eter D appears to be rather small (roughly
of the order 0.1 [47]) and it is often neglect-
ed in simple molecular theories. However,
it has some influence on the N-I transition
as discussed in ref. [47, 49]. At the same
time, except for the parameter D, the molec-
ular biaxiality does not directly manifest it-
self in the Maier—Saupe theory. If one ne-
glects the parameter D, the equations of the
theory will depend on some effective uni-
axial potential which is equal to the true po-
tential between biaxial molecules averaged
over independent rotations of the two mole-
cules about their long axes.

However, the contribution of the biaxial-
ity is nontrivial if the hard-core repulsion
between biaxial molecules is taken into ac-
count. The hard-core repulsion is described
by the Maier function exp [- 8V, (1, 2)] that
depends nonlinearly on the repulsive poten-
tial V (1, 2). In this case the free energy de-
pends on the effective uniaxial potential that
is anaverage of the Maier function. This the-
ory accounts for some biaxial steric corre-
lations and the result of such averaging can-
not be interpreted as a hard-core repulsion
between some uniaxial particles. Thus, it is
the biaxiality of the molecular shape that
seems to be of primary importance.

The biaxiality of molecular shape can be
directly taken into account in the context of
the Onsager theory. The first attempt to do
this has been made by Straley [49]. How-
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Figure 2. Spheroplatelet as a simple model for a bi-
axial particle [50].

ever, the full analyses can be performed
only if the explicit expression for the ex-
cluded volume of the two biaxial particles
is available. This expression has been de-
rived by Mulder [50] for two spheroplate-
lets (see Fig. 2) with an arbitrary relative
orientation. The excluded volume for such
biaxial particles can be written in the ana-
lytical form

Vexcl (wl » (0 )

_3nd’
3

+dabc(lvy X wa|+ vy xwi]

+8na’(b+c)+8abc

+4(1b2 {Vl XV2‘+4LZC2 ’W] XW2|
+ b7 cfluy xvo |+ vy Xuy ]
+ bc? [Juy xwa|+wy Xy ] (63)

where the unit vectors w, u and v are in the
direction of the main axes of the sphero-
platelet and the parameters a, b and ¢ are
shown on Fig. 2. The plausible constant vol-
ume section of the phase diagram of a fluid
composed of such biaxial particles, obtained
in the Onsager approximation, is shown in
Fig. 3. The limiting points ¢=0 and b=0
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Figure 3. Phase diagram of the hard spheroplatelet
fluid in the Onsager approximation for a family of par-
ticles with constant volume and different axial ratio.
The points b=0 and c¢=0 correspond to the sphero-
cylinders (after Mulder [50]).

correspond to the same spherocylinder with
diameter «. In this limiting case the theory
is reduced to the usual Onsager theory. The
midpoint b=c corresponds to the plate-like
particle with the C, symmetry axis. Such
particles form the uniaxial discotic nematic
phase. For O<c<b and for O<b<c the
particles are biaxial. However, for c>»b>c
and for b>c¢>1 they are rod-like while for
b=c they are plate-like. Thus, somewhere
between these two domains one should find
the crossover shape that corresponds to a
boundary between the transitions into two
different nematic phases N, and N_. In the
N_ phase the molecular planes (and the long
axes) are oriented approximately along the
director, while in the N, phase they are
oriented perpendicular to the director. The
crossover shape corresponds also to the
transition from the isotropic to the biaxial
nematic phase. For very long spheroplate-
lets the crossover shape is characterized
by the relation b~c'? in dimensionless
units.
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Figure 4. The dependence of the order parameter and
the discontinuity in density at the N-I phase transi-
tion. The liquid is composed of hard rectangular par-
allelepipeds with dimensions a=1, b and c=3 (after
Gelbart and Barboy [42]).

The phase diagram, shown in Fig. 3, was
obtained from the Onsager approximation
and, therefore, it is expected to be correct
only at low densities. In the case of liquid
densities the role of shape biaxiality has
been analyzed by Gelbart [43]. Gelbart has
considered the nematic ordering of rectan-
gular parallelepipeds having dimensions a <
b<c (with a and ¢ fixed, ¢>a) with the heip
of y-expansion. In Fig. 4, taken from [43],
the nematic order parameter 1 and the dis-
continuity in density at the transition point
are presented as a function of the breadth of
the parallelepiped b that varies between a=1
and c=5. One can readily see that both the
order parameter and the density gap de-
crease strongly with the increasing molecu-
lar biaxiality b/a. For the limiting case of
b=a=1, the rod limit, the order parameter
at the transition is very large. However, for
values of b/a slightly less than 2 both the or-
der parameter and the density gap are rath-
er close to the typical experimental data. Fi-
nally, the value b/a=2.25 corresponds to the
crossover shape and at this point the order
parameter and the density gap vanish iden-
tically.

Thus we see that the effect of shape biax-
iality can indeed be very strong. It seems
that this can be the main reason why the mo-
lecular theories, based on rod-like molecu-
lar models, overestimate the first orderness
of the nematic—isotropic transition.

2.4.6 Density Functional
Approach to the Statistical
Theory of Liquid Crystals

One can find in the literature a large num-
ber of molecular theories of liquid crystals
proposed by different authors using differ-
ent approximations. However, the majority
of these theories and the corresponding ex-
pressions for the free energy can be derived
in a systematic way with the help of some
general approaches. A very fruitful ap-
proach of this kind is the density function-
al theory that has been first applied to lig-
uid crystals by Sluckin and Shukla [52] and
by Singh [53].

In the density functional approach the
free energy of a liquid crystal is represent-
ed as a functional of the one-particle den-
sity p(r, @)=p(r) f; (@) where p(r) is the
number density and f; (r, @) is the one-par-
ticle distribution function. The equilibrium
distribution function is determined, as usu-
al, by minimization of the free energy func-
tional F[p]. The general structure of this
functional is unknown, of course, but the
functional derivatives are known and can be
expressed in terms of the correlation func-
tions.

In the general case the free energy can be
represented as a sum of two terms, F=® + H
where @ is the free energy of the system of
noninteracting particles

D =kT[p(x)[Inp(x)A-1]dx

+ [ px)U, (x)dx (64)
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where x =(r, w), U, (x) is the external poten-
tial and A is a constant. The potential H
is determined by the intermolecular inter-
actions and its functional derivatives are
related to the direct correlation functions.
For example, the second derivative can be
written as

8°HI8p(x)8p(x)) =—kTCy (x1,x2)  (65)

where C,(x,, x,) is the direct pair correla-
tion function related to the full correlation
function by the Ornstein—-Zernike equation.
Now Eq. (63) can be used to develop a the-
ory of the N-I transition. For this purpose
one can perform the functional Taylor ex-
pansion of the free energy of the nematic
phase around its value in the isotropic phase.
The expansion is performed in powers of Ap
where Ap=py—py is the difference between
the one-particle densities in the nematic and
isotropic phases. Now the free energy of the
nematic phase up to the second order in Ap
reads:

Fy=FR+kT (66)
[ pn () [In py ()~ 1 dxy
+,[PN (x)U./xdx,
—JCi(x)8p(x))dx,
1 G (r1.x)8p(x)3p(x2)dxy d

where C;=J0H/6p and where the direct cor-
relation functions C,; (1) and C,(1, 2) are
calculated for the isotropic phase. The high-
er order terms in the expansion (Eq. 64) de-
pend on the higher order direct correlation
functions.

Taking into account the equilibrium con-
dition for the isotropic distribution function

pr:
Inp; + G — py U (1) = const

we arrive at the following self-consistent
equation for the one-particle distribution

function

pn (r, @)
= pr exp[-BU. (r, @)
+ [ Gy (r2.01,0,)8p(ry, )
6p(ry,;)dry dw; | (67)

This general equation applies both to nemat-
ic and smectic phases because the one-par-
ticle density may depend on position. In the
case of a uniform nematic phase without an
external potential we obtain

filon) =
Z exp[ Gy (@0 8p (@) dey]  (68)

We note that Eq. (66) has practically the
same mathematical form as the mean-field
equation (Eq. 39) for the orientational dis-
tribution function. In the density functional
approach the role of the effective pair
potential is played by the direct corre-
lation function C,(®;, @,). In the case of
uniaxial molecules the function C, (1, 2)=
C,((a, - a,)). Expanding this function in
Legendre polynomials, truncation after the
P, term and substituting into Eq. (66), we
arrive exactly at the Maier—Saupe equation
for the orientational distribution function.
This means that the general mathematical
structure of the Maier—Saupe theory is not
restricted to the mean-field approximation.
The same equation has been derived in the
context of a very general density function-
al approach. The only approximation has
been related to the neglect of many-body di-
rect correlation functions. Thus, the main
equations of the Maier—Saupe theory remain
valid generally on the level of pair correla-
tions. This seems to be the main reason why
this approach appears to be so successful in
spite of its simplicity.

In the density functional approach the pa-
rameters of the N-I transition can be ex-
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pressed in terms of the direct correlation
function. Unfortunately, this function can-
not be calculated exactly even for simple
models and thus the general theory has to be
accompanied by some practical approxima-
tions. We note that in this way it is possible
to derive various approximate expressions
for the free energy that have been obtained
in various molecular theories. In other
words, in the context of the density func-
tional approach, various molecular theories
usually correspond to some approximations
for the direct correlation functions. We can
illustrate this idea by the following exam-
ples.

The extended mean-field theory corre-
sponds to the following approximate direct
correlation function:

Cume (1,2) = =Vy (1,2)O(r1 2 = 812 )/ kT (69)

The free energy of the Onsager theory can
be obtained substituting the direct-correla-
tion function by its first virial term

G (1,2) = exp[-BVi (1,2)] -1 (70)

Several more elaborate molecular theories
correspond to the perturbative approxima-
tion

G2y = Cyc (1,2) + guc (1,2) Vi (1,2) (71)

where the functions Cye(1,2) and
guc(l, 2) are calculated for the reference
hard-core system.

Further approximations, including the
ones discussed in Sec. 2.4.3, can be ob-
tained by substituting gy (1, 2) with the
steric cut-off function @(r,,—-&,,) and by
using the Parsons approximation for the

CHC(I’ 2)'
Cuc (L, 2)=Cps(r12/&2) (72)

where Cy (1, 2) is the direct correlation
function for a hard-sphere fluid. The more
detailed discussion of various approxima-

tions for the direct correlation function can
be found in the paper of Sluckin [54]. Re-
cently some of these approximations have
been tested against computer simulations
[55].

The brief discussion of the density func-
tional theory, presented above, enables one
to conclude that this is a very powerful ap-
proach. It appears to be particularly helpful
in the derivation of general expressions for
various elasticity coefficients of the nemat-
ic phase. Indeed, it is also possible to ex-
pand the free energy of the distorted nemat-
ic state with respect to the homogeneous
state in the same way as in Eq. (64). In this
case the difference in the one-particle den-
sities of the two states d p is proportional to
the gradients of the director and can be ar-
bitrarily small. Then the functional expan-
sion appears to be quantitatively correct. In
this way it is possible to derive formally ex-
act expressions for the Frank elastic con-
stants [56], helical twisting power [57] and
flexoelectric coefficients [58]. It should be
noted, however, that so far the density func-
tional theory has been formulated only for
a system of rigid molecules. Thus, the cor-
responding general expressions are restrict-
ed to this simple class of molecular model.

2.5 Molecular Models
for Simple Smectic Phases

2.5.1 Mean-field Theory of the
Nematic-Smectic A Transition

Smectic phases are characterized by some
positional order and therefore the one-par-
ticle distribution function f; (r, @) depends
both on position r and the orientation @. In
the simplest smectic A phase there exists
only one macroscopic direction that is par-
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allel to the wave vector k of the periodic
smectic structure. By contrast, in the smec-
tic C phase there are two different macro-
scopic axes because the director is tilted with
respect to k and thus the phase appears to be
biaxial. As a result the distribution function
of the smectic C phase generally depends on
the orientation of both molecular long and
short axes, if the molecules are biaxial.

For the smectic A phase the one-particle
distribution function can be expanded in a
complete set of basic functions:

fi(r,a)= fi(cosw,z)
=Y. fim B(cosw)cos(kmz) (73)
Im

where cosw=(a - 12) and where k =k/k.
From Eq. (71) one can readily see that the

dominant (i.e. lowest order) order parame-

ters for the nematic—smectic A transition are:

S(P, (cosm))
0 = (P, (cosw)cos(kz))
7 =(cos(kz)) (74)

Here S is the usual nematic order parame-
ter, 7 is the purely translational order pa-
rameter and the parameter ¢ characterizes
a coupling between orientational and trans-
lational ordering.

The simple theory of the nematic—smec-
tic A transition has been proposed by McMil-
lan [59] (and independently by Kobayashi
[60]) by extending the Maier—Saupe ap-
proach to include the possibility of trans-
lational ordering. The McMillan theory is a
classical mean-field theory and therefore the
free energy is given by the general Eq. (34).
For the smectic A phase it can be rewritten as

F = const +%p2 [V(ai,a;.ry)
fila,r) fia;,r;) da;da;dr; drj
+pkT | fi (a;,r;) In fi(a;,r;)da;dr;  (75)

where p is the mean density.

In the McMillan model the pair interac-
tion potential is specified as

V(ai,a;,ry)==J1(r2) (6 + B ((a;ay)))

where J is a dimensionless constant.
McMillan used a particular form for the
coupling constant J, (r,):

Jo(r2)= N‘rg‘;rw exp [—(fl 2/r0)2] (7
where r; is some length of the order of the
length of the rigid molecular core.

We note that the model potential (Eq. 74)
is strongly simplified because in Eq. (74)
the positional and orientational degrees of
molecular freedom are decoupled. It has
been pointed out by many authors [74-76]
that in the general case the interaction po-
tential must depend on the coupling between
the intermolecular vector r| , and the molec-
ular primary axes a; and a,. We discuss
the role of these terms in the next subsec-
tion.

The coupling constant (Eq. 75) can be
expanded in Fourier series retaining only the
leading term:

Jr(r2)==V[l+acos(kz)] (78)
where
a=2exp[-(kry/2)] (79)

In the McMillan model the parameter o
characterizes the strength of the interaction
that induces the smectic ordering. The pa-
rameter o decreases with the increasing
smectic period d=2n/k which is of the
order of molecular length. Thus « is sup-
posed to increase with increasing chain
length.

The mean-field equilibrium distribution
function is given by the general Eq. (35).
Substituting Eq. (76) into Eq. (75) and then
into Eq. (35) we obtain the distribution
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function of the smectic A phase
ficosw, z)
=z exp[% (datcos(kz)+ao cos(kz)

- Py (cosw) + SP, (cosw)]  (80)

Multiplying both sides of Eq. (77) with the
functions P, (cos @), cos(kz) and cos(kz)
P, (cos w) and integrating over @ and z, one
obtains the equations for the three order pa-
rameters

S=(dIZ) [P, (cos )
-exp[(Vo/kT) SP, (cos )]
Iy (x)dcosw

0 =(d/Z) [ P, (cosw)

: exp[(VO/kT)SPZ (cosa))]
Iy (k)dcosw

t=(d/Z) [ exp[(Vy/kT)SP; (cos )]

Iy (x)dcosw (81)

where k=(Vy/kT)[axo P,(cos®)+da ] and
the function 7, (x) is the n-th order modified
Bessel function that appears after the inte-
gration over z.

Equation (78) together with the expres-
sions (Egs. 73 and 74) for the free energy
can be used to calculate numerically the pa-
rameters of the nematic—smectic A phase
transition. The corresponding phase dia-
gram, taken from the original paper by
McMillan [59], that includes the isotropic,
nematic and smectic A phases is shown in
Fig.5. The insetin Fig. 5 also presents a typ-
ical phase diagram of a homologous series
of compounds showing the transition tem-
perature versus alkyl chain length.

In general the McMillan theory provides
a good qualitative and sometimes even
quantitative description of the nematic—
smectic A phase transition. The theory ac-
counts successfully for the decrease in the
transition entropy with the breadth of the ne-
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Figure 5. Phase diagram of a liquid crystal system
according to the McMillan theory. Inset: typical phase
diagram for a homologous series of compounds (after
McMillan [59]).

matic phase and even enables one to locate
the tricritical point in a reasonable way. A
more detailed discussion of the McMillan
theory can be found, for example, in the
book of Chandrasekhar [61].

The McMillan theory has been further re-
fined by several authors [62—64] to improve
the quantitative agreement with experiment.
However, the basic structure of the theory
remains the same. This theory presents an-
other example of a successful application of
a simple mean-field approach. On the other
hand, there are several limitations of the
McMillan theory that cannot be ignored.
Firstly, the theory is based on the semi phen-
omenological potential that does not allow
determination of the smectic period in a self-
consistent way. Secondly, the model poten-
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tial (Eqg. 74) is of the attractive type and
therefore the McMillan theory does not con-
sider the relative role of intermolecular at-
traction and hard-core repulsion in the sta-
bilization of the smectic A phase. This prob-
lem appears to be of particular importance
after it was shown by computer simulations
that the smectic A phase can be formed in a
system of hard spherocylinders without any
attraction interaction. Finally, the potential
(Eq. 74) does not depend on a coupling
between orientational and translational de-
grees of freedom. This means that McMil-
lan theory does not account for an interac-
tion that forces the director to be normal to
the smectic plane. The corresponding free
energy is then unstable with respect to smec-
tic C fluctuations.

Several authors have used different ap-
proaches to overcome these limitations in
order to develop a more sophisticated sta-
tistical theory of the smectic A phase. We
will discuss briefly some of the recent the-
ories in the following two subsections.

2.5.2 Phase Diagram
of a Hard-rod Fluid

The computer simulation studies of Frenkel
et al. [45] indicate that the excluded volume
effects for molecular hard cores must
play an important role in the stabilization
of the smectic phase. In particular, it has
been shown that hard spherocylinders, inter-
acting only via hard-core repulsion, can
form nematic, smectic A, and columnar
phases.

In the system of very long spherocylin-
ders the nematic—isotropic transition can be
quantitatively described by the Onsager the-
ory discussed in Sec. 2.3.2. At the same
time, this approximation is expected to pro-
vide only a qualitative description of the ne-
matic-smectic A transition in the same

system. The reason is that long spherocy-
linders undergo a transition into the nemat-
ic phase at very small packing fractions
1 ~D/L <1. By contrast, the nematic—smec-
tic A transition is expected to occur at large
7 ~1. The corresponding critical packing
fractions can be estimated in the following
way [65]. The Onsager theory is based on
the virial expansion in powers of the num-
ber density p=n/v, where v, is the molec-
ular volume. The transition to the nematic
phase is determined by a balance between
the orientational entropy pJf,(1) Inf,(1)
d (1) which is a maximum in the disordered
state and the packing entropy ~p*(V,,.(1,2))
which is a maximum in the orientationally
ordered state. Thus the critical packing
fraction is estimated as Nn_y~Vo/{Vexer)-
For long rods one finds (V,,)~L*D and
vo~D?L. Thus Ny y~D/L<1.

We note that in the system of long rods
the nematic phase is strongly ordered. Then
the transition into the smectic A phase is ex-
pected to take place in the nearly perfectly
aligned system of rods. For parallel rods,
however, the excluded volume (V) ~ D* L
and thus 1y _a ~ L. This means that one can-
not rely on the virial expansion even in the
case of very long rods.

One possibility for improving the theory
is to take into account higher order terms in
the virial expansion. This has been done by
Mulder for an aligned hard-rod fluid [66].
Mulder has taken into account the third- and
fourth-order terms and has been able to ob-
tain the numerical values of the transition
density and the smectic period in very good
agreement with the results of computer sim-
ulations [67]. The critical packing fraction
and the dimensionless smectic wavelength
observed are ny_, =0.36 and A= 1.27 while
the theoretical results are My _,=0.37 and
A=1.34 [66]. Recently Poniwierski per-
formed an asymptotic analysis of the nemat-
ic—smectic A transition in the system of
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rods with orientational freedom and in the
limit L/D— e [65]. He has shown that
orientational fluctuations do not destroy the
smectic A phase but the transition is shift-
ed towards higher densities.

A different and more sophisticated ap-
proach to the theory of the nematic—smec-
tic A transition is based on the nonlocal den-
sity functional theory developed for inho-
mogeneous hard-core fluids [68]. The non-
local free energy functional is defined in the
following way [69-71]:

Flp(r)]=Fa[p®)]+H[p1)] (82)

where Fi,[p] is the ideal gas contribution
(see Sec. 2.4.4).

The excess of free energy H[p] is as-
sumed to have a form resembling the local
density approximation:

H[p(]=[p(r) Ay (p(r))dr (83)

where Ay is the excess of free energy per
particle and p (r) is some auxiliary density
that depends on p(r). For a homogeneous
isotropic fluid p=p. In the inhomogeneous
state p (r) is related to p(r) in a nonlocal
way:

P(r)=[Wesr (r =1) p(r')dr’ (84)

where @, (r—r’) is some weighting func-
tion.

The form of the function @, (r) is differ-
ent in different versions of the smoothed-
density approximation proposed by Somo-
za and Tarazona [71, 72] and by Poniwier-
ski and Sluckin [69, 73]. The density func-
tional model of Somoza and Tarazona is
based on the reference system of parallel
hard ellipsoids that can be mapped into hard
spheres. In the Poniwierski and Sluckin the-
ory the effective weight function is deter-
mined by the Maier function for hard sphe-
rocylinders and the expression for Ay (p) is
obtained from the Carnahan-Starling ex-

Figure 6. Phase diagram of a fluid of hard sphero-
cylinders in the (axial ratio/order parameter) plane.
The circles are the simulation results for the smectic A
transition [45]. The N-SmA transition obtained in {45]
is denoted by squares N and triangles SmA (after
Poniwierski and Sluckin [69]).

cess of free energy for hard spheres with the
same packing fraction.

Both groups have obtained phase dia-
grams for a fluid of hard spherocylinders
that are in qualitative agreement with the re-
sults of computer simulations [45]. Figure 6
shows the phase diagram in the (L/D), n
plane, obtained by Poniwierski and Sluckin
[69], because it gives a more reasonable val-
ue for the tricritical point. One can see from
Fig. 6 that the nematic—smectic A transition
is first order for L/D<5.9 and it is second
order for L/D>5.9. The location of the
I-N-SmaA triple point in Fig. 6 is in good
agreement with simulations. The same good
agreement has also been obtained by Somo-
za and Tarazona {71].
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2.5.3 The Role
of Intermolecular Attraction

The results of several molecular theories
that describe the smectic ordering in a sys-
tem of hard spherocylinders enable us to
conclude that the contribution from hard-
core repulsion can be described by the
smoothed-density approximation. On the
other hand, a realistic theory of thermotrop-
ic smectics can only be developed if the
intermolecular attraction is taken into ac-
count. The interplay between hard-core re-
pulsion and attraction in smectic A liquid
crystals has been considered by Kloczkow-
ski and Stecki [17] using a very simple
model of hard spherocylinders with an ad-
ditonal attractive r~® potential. Using the
Onsager approximation, the authors have
obtained equations for the order parameters
that are very similar to the ones found in the
McMillan theory but with explicit expres-
sions for the model parameters. The more
general analysis has been performed by Me-
deros and Sullivan [76] who have treated the
anisotropic attraction interaction by the
mean-field approximation while the hard-
core repulsion has been taken into account
using the nonlocal density functional ap-
proach proposed by Somoza and Tarazona.
In [76] the intermolecular attraction po-
tential has been taken in the form
(85)
Vi (1,2) = Vi (r12) + Va(r12) By ((a, - @y)

+ V3(r12)[l’2 ((al '"12))"'132((112 'u12))]

where u | ,=r;,/r,.

We note that the last term in Eq. (82) has
been omitted from the McMillan—Kobaya-
shi theory. This term explicitly describes a
coupling between the molecular long axis
and the intermolecular vector. The effect of
such coupling seems to be very important in
smectic liquid crystals because this energy

is obviously minimized when the molecules
are packed in layers with their long axes
parallel to the layer normal. (That is if
r,,la,lla,). The magnitude of the coupling
constant V; in the last term is comparable to
that of V, for rod-like molecules with an
clongation typical of that for mesogens [77]
and can even be predominant for weakly an-
isotropic molecules [78]. It should be noted
also that the last term in Eq. (82) does not
contribute to the free energy of the nematic
phase in the mean-field approximation as it
vanishes after averaging over all orienta-
tions of the intermolecular vector.

Using the specific expressions for the
coupling constants in Eq. (82), Mederos and
Sullivan obtained the temperature—density
phase diagrams shown in Figs. 7a and b.
These two diagrams have been obtained for
the same value of the geometrical anisotro-
py o,/0, and for different values of the re-
duced strength of the symmetry breaking
potential given by the last term in Eq. (82).
We see that the smectic phase is stabilized
with the increasing strength of the symme-
try breaking potential. By contrast, the ne-
matic phase tends to disappear. Thus the
coupling between orientational and transla-
tional degrees of freedom is important in-
deed and it should also be taken into account
in the description of the hard-core repulsion
in smectic phases. It is not excluded, how-
ever, that the role of such interaction is over-
estimated in the Mederos—Sullivan theory
because in this treatment the hard-core re-
pulsion alone does not lead to the smectic A
phase.

2.5.4 Smectic A-Smectic C
Transition

The transition from the smectic A phase into
the smectic C one is accompanied by the tilt
of the molecular long axes with respect to
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the smectic plane normal e. We note that the
resulting structure is unfavorable from the
packing point of view [79]. Tilted molecules
occupy more area in the smectic plane and
therefore in the smectic C phase there is
more excluded area in the layer than in the
smectic A phase. As aresult the packing en-
tropy is decreased. This means that the
smectic C phase is not expected to be
formed in the system of hard rods, and, in-
deed, it has not been found in computer sim-
ulations of Veerman and Frenkel [45].

Thus, the smectic C phase can be formed
only if there exists some specific intermo-
lecular interaction that favors the tilt. Dif-
ferent interactions of this kind have been
considered in the literature [79, 80-84] and
some early theories have been analyzed in
detail by Van der Meer [14].

1.10

ros and Sullivan {76]).

Different molecular models for the SmC
phase can be separated into two main class-
es that actually correspond to different mo-
lecular mechanisms of the smectic A—smec-
tic C transition. Some models (for example,
those of McMillan and Meyer [§1] and Wulf
[80]) imply that the molecular rotation about
the long axis is frozen out in the smectic C
phase. It seems to be even more important
that in these models the smectic A—smec-
tic C transition is governed by the ordering
of molecular short axes while the tilt of the
long axes occurs as a consequence. By con-
trast, in other models [82] the transition is
directly related to the tilt of the long axes
and the biaxiality of the smectic C phase is
neglected.

We note that the more recent molecular
models for the smectic C phase [79, 83, 84]
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also fall into one of these classes. For ex-
ample, the model of Somoza and Tarazona
[83] is based on steric interactions between
molecules with biaxial shape. This interac-
tion is assumed to be the driving force of the
transition into the biaxial smectic C phase.
At the same time, in the theory of Van der
Meer and Vertogen [79] the molecular tilt is
caused by the induction interaction between
the off-center transverse dipoles and the po-
larizable core of neighboring molecules.
This induction interaction is quadratic in di-
pole and therefore the free rotation around
the molecular long axis does not destroy the
smectic C phase. The recent theory of
Poniwierski and Sluckin is based on the uni-
axial molecular model in which hard cylin-
ders carry axial quadrupoles.

It should be noted that the assumption of
a strongly asymmetric orientational distri-
bution of molecular short axes in the smec-
tic C phase seems to be in contradiction with
experiments [85]. Some other models also
do not have any experimental support so
far. Goodby et al. [87] and de Jeu [88] have
studied the influence of electric dipole and
molecular shape on the stability of the smec-
tic C phase. The results do not support
the models of Wulf [80] and Cabib and Ben-
guigui [82] but reveal the importance of
transverse dipoles. Thus there is some
experimental evidence in favor of the
model proposed by Van der Meer and Ver-
togen.

In this model the molecular tilt is deter-
mined by induction interaction between the
oft-center dipole and the polarizable core of
the neighboring molecules. After averaging
over the rotation around the molecular long
axes the corresponding interaction potential
reads [79]:

Ving (1,2) = = Jing (12 (@1 u12)?) (86)

where the coupling constant J;,4o< & #* and

where (@ is the molecular dipole and & is the
average molecular polarizability.

The interaction energy (Eq. 83) promotes
the tilt of the director in the smectic C phase.
This can be seen in the following way. Let
us consider the case of perfect nematic
ordering. Then the potential (Eq. 83) is re-
duced to —J,,4 (1 - u;,)*. Now let us average
this potential over all orientations of the
intermolecular unit vector u,, within the
smectic plane. For any two molecules with-
in one plane the vector u,,.Le and one ob-
tains

(Ving (1,2)) = —Jipg cos* © (87)

where @ is the tilt angle, cos@=(n - e).

In the model of Van der Meer and Verto-
gen the induction interaction energy (Eq.
83) is counterbalanced by the hard-core re-
pulsion coupled with isotropic attraction
between molecular hard cores. The result-
ing interaction potential is presented in the
form of an expansion:

Vere (1, 2) = (1 = Jing)
(a1 wy2) +(ar uy2)?
+va(ar-ay)(a;-up)(ay-uy )
+v3(ar-w2) (ay w)*] (88)

where the coefficients v;, v, and v are ex-
pressed in terms of the shape anisotropy and
the attraction interaction strength.

In Eq. (85) the constant »; is positive
and thus, without the induction interaction,
the potential (Eq. 85) stabilizes the smec-
tic A phase. Taking into account the pack-
ing entropy, Van der Meer and Vertogen
have obtained the following simple free
energy in the case of perfect nematic order-

ing:

AF=—21— Dy(cosg)? — kT In ﬁ

-fdgexp [ﬁD0<cos¢>cos¢)] (89)



68 2 Molecular Theories of Liguid Crystals

where

Dy=2[(1+T/T,)B, - G,
Py (cos®)—-(1-T/T,)
- B4 Py (cos®) (90)

Here (cos ¢) is the smectic order parameter
and the coefficients B,, C, and B, are pre-
sented in [79]. The induction interaction
strength is adsorbed in C,.

The simple free energy (Eq. 86) can be
used to describe the transitions between ne-
matic, smectic A and smectic C phases. The
second order smectic A~smectic C transi-
tion temperature is given by

_3§;__1] o)

Tane=T
ac p(332—5194

In this model the temperature variation of
the tilt angle is the reduced temperature
scale and does not depend on any molecu-
lar parameters. The corresponding temper-
ature variation for the smectic A—smectic C
and nematic—smectic C transitions is shown

e

1

07 08 09 10
(b} T/Thg

Figure 8. Temperature dependence of the tilt angle
in the SmC phase near the second-order A-C transi-
tion (a) and near the first-order N—C transition (b) (af-
ter Van der Meer and Vertogen [79]).

in Fig. 8a and b, respectively, taken from
[79].

The molecular theory of Van der Meer
and Vertogen is based on a specific molec-
ular model that is not in contradiction with
experiment. At the same time Barbero and
Durand [89] have shown that the molecular
tilt is an intrinsic property of any layered
quadrupolar structure. This idea has been
used by Poniwierski and Sluckin in their
model [84] that presents a rather general
mechanism for the stabilization of the smec-
tic C phase. It is interesting to note that the
mathematical form of the interaction poten-
tial in the Poniwierski—Sluckin theory is
similar to the potential (Eq. 85). The ener-
gy of electrostatic interaction between two
axial quadrupoles, employed in [84], can be
written as

2
Ugq(1,2)= % ‘r1—5
[1+2(aay)* = 5@ w12)* = 5(a w12
—20(ay - ay )(ay-uy2)(ay u>)

+35(a;-u12)% (ayu2)?] (92)

The last three terms of the potential (Eq. 90)
have the same mathematical form as the cor-
responding terms in Eq. (85). This means
that the quadrupolar-type potential appears
to be a good model potential for the theory
of smectic A—smectic C transition.

The interaction potentials (Egs. 85 and
90) essentially depend on a coupling be-
tween the molecular orientation and the
intermolecular vector. We note that this
coupling could be neglected in the first ap-
proximation in the theory of the nemat-
ic—smectic A transition, as it is done, for ex-
ample, in the McMillan theory. At the same
time this coupling just determines the effect
in the theory of transition into the smectic C
phase.

Finally we note that both theories, dis-
cussed above, neglect the biaxiality of the
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Figure 9. Biaxiality order parameter B
as a function of the tilt angle in the SmC
phase. The curves (3)—(1) correspond to
the increasing strength of the biaxial
part of the interaction potential {8].

1 2 3 4
10 @2

smectic C phase. In real systems some bi-
axiality is always induced by the tilt and it
is only a question of how large the corre-
sponding contribution is to the free energy.
In Fig. 9 we present the value of the biax-
iality order parameter B (that determines the
nonpolar ordering of molecular short axes
in the smectic C phase) as a function of the
tilt angle. This dependence has been calcu-
lated theoretically in [8] using a simple
model. The value of the biaxiality order pa-
rameter seems to be overestimated. Howev-
er, even if the actual value is several times
smaller, the problem of interaction between
biaxiality and the tilt in the smectic C phase
deserves further attention.

2.6 Conclusions

The literature on the molecular theory of liq-
uid crystals is enormous and in this chapter
we have been able to cover only a small part
of it. We have mainly been interested in the
models for the nematic—isotropic, nematic—
smectic A and smectic A-smectic C phase
transitions. The existing theory includes al-
so extensive calculations of the various pa-
rameters of the liquid crystal phases: Frank
elastic constants, dielectric susceptibility,
viscosity, flexoelectric coefficients and so

on. This part of the molecular theory of lig-
uid crystals remains completely beyond the
scope of this review. We also did not con-
sider the theory of more complex liquid
crystalline phases including the cholesteric
phase, the ferroelectric smectic C* phase,
re-entrant phases, bilayer and incommensu-
rate smectic phases and phases with hexatic
ordering. The majority of these theories,
however, employ the same general ideas and
approximations that have been discussed
above. Thus the present review presents
some basic information necessary for the
understanding of the existing molecular the-
ory of liquid crystals.
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3 Molecular Modelling

Mark R. Wilson

Over the past 10 years, rapid progress has
been made in the field of molecular model-
ling. Advances have been led by two impor-
tant factors: the increase in speed and reduc-
tion in cost of modern computers, and an ac-
companying improvement in the accuracy
and ease of use of molecular modelling soft-
ware. Modelling packages are now com-
monly available in many laboratories. Their
ability accurately to predict molecular struc-
tures of simple organic molecules makes
them a useful tool in the study of liquid crys-
tals. In this article developments in molecu-
lar modelling are discussed in the context of
liquid crystal systems. The article is divided
into two main sections: Sec. 3.1 covers the
main molecular modelling techniques that
are currently available; whilst Sec. 3.2 cov-
ers specific applications of these techniques
in the study of liquid crystal molecules.

3.1 Techniques
of Molecular Modelling

3.1.1 Molecular Mechanics

Molecular mechanics is the simplest and
most commonly used molecular modelling
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technique. Tt is concerned with the determi-
nation of molecular structure, and is of par-
ticular relevance to liquid crystal chemists
concerned with the design of appropriate
molecular structures, or to physicists inter-
ested in calculating molecular properties.
The molecular mechanics approach has
been reviewed in a number of places [1-4],
and so here only the basics of the technique
are described. The standard approximation
employed in molecular mechanics is to con-
sider a molecule as a collection of atoms
held together by elastic restoring forces.
These forces are described by simple func-
tions that characterise the distortion of each
structural feature within a molecule. Usual-
ly separate functions exist for each bond
stretch, bond bend, and dihedral angle; as
well as for each nonbonded interaction. To-
gether these functions make up the molecu-
lar mechanics force field for a particular
molecule. The steric energy E can then be
defined with reference to the force field. E
has no physical meaning in itself, but can be
thought of as measuring how the energy of
a particular molecular conformation varies
from a hypothetical ideal geometry where
all bonds, bond angles, etc. have their ideal
(or natural) values.



E= Z Ebond + 2 Eangle (1)
bond bond

lengths angles

N N
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. angles
The symbols in Eq. (1) have the following
meanings: Ey 4 is the energy of a bond that
is stretched or compressed from its natural
value, E,q . 1s the energy of a bond angle
that is distorted from its natural value,
Eorsion 18 the energy of a dihedral angle that
is distorted from its natural value, E,,;; and
E,; are respectively the Lennard-Jones
and electrostatic nonbonded interactions
between the pair of atoms i and j, and N is
the number of atoms in the system.

Bond stretches are usually characterised
by a harmonic potential of the form

Evond = 3 K (1= 1p)” 2)

where [ is the stretched or compressed bond
length, /; is the natural bond length for an
undistorted bond, and K|, is a force constant
characterising the bond distortion. If a car-
bon-carbon bond is stretched from its ideal
lowest energy value of l,=1.523A, this re-
sults in a contribution to the steric energy in
Eq. (1). Similarly, £, and E\,,, Charac-
terise bond angle and dihedral angle pertur-
bations through a harmonic potential and a
truncated Fourier series respectively:

Eangle = % K@ (9 - 90 )2 )
Eoonion = 5.3 Ky, [1+c0s (mg=8)  (3)

where 0 and 6, are distorted and natural
bond angles, ¢ is a dihedral angle, 6 is a
phase angle, and Kgand K, are force con-
stants. Finally, 12-6 and Coulomb poten-
tials are often used for nonbonded interac-
tions:

A G _4i4;

Enbij - r~1~2 - r§ s Ee]ij - Py
ij i i

4
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Here, r;; is the distance between atoms i and
J A= (AiiAjj)l/z» Cyi=(Cy ij)m, and ¢, and
q; are the partial electronic charges on at-
oms i and j. A;; and C;; can be expressed in
terms of the Lennard—Jones parameters &
and 0: A;=4 ¢,0.? and C;=4 €, 05,

Each molecular conformation has a dif-
ferent value of the steric energy. So, al-
though E has no direct physical significance
by itself, the differences between steric en-
ergies of any two conformations is equiva-
lent to the energy difference between them.
The terms in Eq. (1)—(4) are not unique, and
the exact form of the potential functions dif-
fers from one force field to another. How-
ever, all force fields rely on the fact that a
specific interaction is similar in every mole-
cule (i.e. a pure C-C bond stretch in ethane
is similar to a C—C stretch in decane or in a
large liquid crystal molecule). In paramet-
erising the force field, all the force constants
are carefully optimised to predict the struc-
tures and relative conformational energies
of a control set of small molecules.

Currently, a number of excellent force
fields exist in the literature. For low molec-
ular weight organic liquid crystals, the MM3
force field [5] (and its predecessors MM2
and MM1 [6, 7]) generally produce excel-
lent structures and good conformational en-
ergies. Molecules containing mainly alkyl
chains and saturated rings are described well
by most force fields. However, calculations
involving some functional groups common-
ly used in liquid crystal molecules (e.g.
~N=N-, F, and CN will yield less accurate
structures and energies. Parameters asso-
ciated with these groups are often marked
preliminary within force fields. This simply
reflects the lack of molecules with these
functional groups in the force field control
set. The range of valence states adopted by
metals, the lack of metals in force field con-
trol sets, and polarization effects associated
with metal ions (which are not handled well
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by traditional force fields) combine to make
structural predictions for metal-containing
liquid crystal structures much less reliable
than predictions for organic liquid crystals.

Once an appropriate force field has been
chosen, the aim of a molecular mechanics
study is to optimise molecular geometry by
minimising E. In an energy-minimised con-
formation the strain associated with the ster-
ic energy will be spread throughout the
molecule. In practice, molecular mechanics
packages consist of a force field combined
with energy minimisation routines, and of-
ten a graphical user interface (GUI) to pro-
vide an easy mechanism for carrying out
molecular calculations. A typical molecular
mechanics calculation consists of the fol-
lowing steps:

— build a trial molecular structure by pro-
viding coordinates from a crystal structure
or generating drawn structures via a GUI;

— minimise the energy of the trial structure
to provide a minimum energy conforma-
tion;

- undertake a search for other energy min-
ima by adjusting dihedral angles within a
molecule and re-minimising the steric en-
ergy for each conformation.

The final result of this process is a series of
potential energy minima, one of which will
be the global minimum and represent the
lowest energy conformation of the mole-
cule. For many liquid crystal molecules,
many conformations exist that are similar in
energy. This makes the tasks of finding the
global energy minimum and characterising
molecular structure difficult. New tech-
niques for conformational searching have
recently made this process easier [8-10].
However, the problem of energy minimisa-
tion on a multidimensional surface is still a
difficult one, and for complicated molecules
it is not always possible to guarantee that all
relevant conformations have been found.

A single molecule with N, - energy min-
ima can be thought of as a N ¢ state system
with the probability P; of the molecule be-
ing in state j given by the Boltzmann distri-
bution

exp (AE; [ kgT
p= e A5 ED (5)
Y exp (AE; / kgT)

i=1

where AE; is the energy of conformation i
relative to the lowest energy conformation
and kg is Boltzmann’s constant. The use of
Eq. (5) provides a simple weighting for each
of the conformational states occupied at a
particular temperature 7.

3.1.2 Molecular Dynamics
and Monte Carlo Simulation

One of the ways of circumventing the prob-
lem of finding multiple energy minima of
complex molecules is to turn to more so-
phisticated techniques that are capable of
sampling phase space efficiently without the
need to home in on particular minimum en-
ergy conformations. The two most useful
techniques are molecular dynamics (MD)
and the Monte Carlo (MC) method. Both ap-
proaches make use of the same types of po-
tential functions used in molecular mechan-
ics, but are designed to sample conforma-
tion space such that a Boltzmann distribu-
tion of states is generated. MC and MD tech-
niques for molecular systems have been
widely reviewed [11-14], and only the ba-
sics of the two methods are described be-
low.

In molecular dynamics Newton’s equa-
tions of motion are solved for the system of
atoms interacting via a potential such as that
of Eq. (1). For each atom, the force F; is giv-
en by

F,=-VE, (©)



where E; is the interaction energy of atom i
in the force field. Typically, each atom is
given a velocity sampled from a Max-
well-Boltzmann distribution, and the equa-
tions of motion are solved using finite dif-
ference techniques [13]. Simuiations are
broken down into a series of small time steps
ot, and at each time step atomic forces are
calculated and used to advance the veloc-
ities and atomic positions forward in time
(see the schematic in Fig. 1). In the simplest
form of MD the total energy of the system
is conserved. However, it is usually more
useful to employ a thermostat (such as the
Nosé-Hoover thermostat [15]) in order to
carry out MD calculations at constant tem-
perature. When molecular mechanics force
fields are used, the size of time step chosen
depends on the fastest motion in the system,
which is invariably a bond stretch. As a gen-
eral rule, energy conservation improves dra-

READ INITIAL ATOMIC COORDINATES r, (1)
AND INITIAL ATOMIC VELOCITIES v(t-35t)
AND MASSES mi

——| CALCULATE ATOMIC FORCES Fyt) = -vE ]

I ADVANCE VELOCITIES v(t+18t) = v(t-381) + F,{!)/m,)étJ

2

I ADVANCE POSITIONS r(t+3t) = r(t) + 8tv(t+18t); t+8t—t |

N

SAVE COORDINATES
FOR LATER USE
EVERY N/N, STEPS

N

Figure 1. Schematic representation of a molecular
dynamics simulation. The scheme for integrating the
equations of motion is known as the leapfrog algo-
rithm. The figure shows a flow diagram involving N,
samples of the coordinates for a simulation of N steps.
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matically as time steps are reduced, and 61
should be at leat 25 times smaller than the
period of the fastest motion in the system.
For this reason, it is usual practice to con-
strain bond lengths in an atomic simulation
using the SHAKE procedure [16]. This ap-
proximation works well because bond
stretches are usually of sufficiently high fre-
quency to be decoupled from bond bending
motion and torsional angle rotations. With
SHAKE, a typical MD time step is 2 fs;
without bond length constraints, this must
be reduced to at least 0.5 fs, with a conse-
quential increase in computer time required
for simulation.

Many molecular mechanics packages
now include MD as an option. In a typical
MD simulation of a single molecule, the
molecule is slowly warmed from an energy-
minimised (zero kelvin) structure to the re-
quired average temperature over a period of
afew picoseconds. Simulations are then car-
ried out for the desired length of time, with
molecular conformations saved periodical-
ly for later analysis throughout the course
of the simulation run. Later analysis of these
conformations is then able to provide time-
averaged information for a single molecule
at the temperature of the simulation. This
approach yields useful data on dihedral an-
gle distributions, moment of inertia ellip-
soids, average dipole moments, etc.

However, single molecule molecular dy-
namics for liquid crystal molecules can of-
ten be problematic. Many liquid crystal
systems have torsional energy barriers in ex-
cess of 12 kJ mol™! separating conforma-
tions of similar energy (see Sec.3.2.1).
Such barriers can be difficult to cross dur-
ing the course of a short MD simulation, and
this can result in molecules becoming peri-
odically trapped in regions of phase space.
This has led to the development of stochas-
tic dynamics techniques where random
noise added to the equations of motion is de-
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signed to mimic the effects of molecules col-
liding with a heat bath of surrounding mole-
cules [17]. This process can lead to much
faster barrier crossing rates than in standard
MD. However, long simulations of
10-100 ns may still be needed if good dihe-
dral angle distributions are required.

In Monte Carlo simulations the molecu-
lar mechanics interaction potential [Eq. (1)]
can be used directly without the need to cal-
culate atomic forces. Molecules must usu-
ally be represented by a set of internal co-
ordinates (bond lengths, bond angles, and
torsional angles), and the Metropolis ap-
proach is used to sample the configuration-
al part of the partition function [11,12,14].
The Metropolis scheme involves making
random changes to bond angles and torsion-
al angles (bond lengths are usually held
fixed) [11,18]. The energy of a new confir-
mation E,,, is then calculated and com-
pared with the previous energy E 4. If the
trial energy is lower than E 4, the trial move
is accepted. If the trial energy is higher than
E 4 the moveisacceptedif exp [- (AE)/ kg T
is greater than a random number between 0
and 1, where AE=E,_, —E_4- Consequent-
ly, over the course of a MC simulation,
moves are accepted with a probability' of
exp [-(AE)kgT].

Single molecule MC simulations sample
phase space much more efficiently than the
corresponding MD calculations. Trial rota-
tions about dihedral angles provide a mech-
anism to overcome the large energy barriers
between liquid crystal conformers. The
drawback of such calculations is complex-
ity. They require a consistent representation
of molecular structure, where Cartesian co-
ordinates can be generated from a single ref-
erence point in terms of a set of specified

"When bond lengths are constrained, a small correc-
tion factor should be introduced in the configuration
sampling to take account of the constraints [18].

I READ INITIAL ATOMIC COORDINATES r; I

[~ READ POTENTIAL FUNCTIONS |

COMPUTE ENERGY FROM COORDINATES
AND POTENTIAL FUNCTIONS  Egy

MOVES v
TR MAKE TRIAL MC MOVEI
MADE? J

|7COMPUTE NEW ENERGY EHEJ

SAVE COORDINATES| | COMPUTE ENERGY DIFFERENCE

FOR LATER USE AE = Epgy - Eou
EVERY N/N, STEPS
IS RANDO!
ACCEPT NEW NUMBER
CONFIGURATIO!

RECOVER OLD
CONFIGURATION

Figure 2. Schematic representation of a Metropolis
Monte Carlo simulation. This scheme is suitable for
most soft potentials, but constraints must be handled
carefully (see footnote to text). N trial moves are at-
tempted, with coordinate sampling carried out every
NIN, trial moves.

internal coordinates [18]; therefore it is
harder to write general MC programs to han-
dle any molecular structure. Despite this
limitation, MC calculations are starting to
become available in some modelling pack-
ages. Figure 2 shows a schematic diagram
for the Metropolis method. The overall MC
methodology is similar to that used in mo-
lecular dynamics, with conformations being
periodically saved for later analysis after an
initial equilibration period. A new tech-
nique has recently arisen that mixes stochas-
tic dynamics with Monte Carlo sampling of
dihedral angles [19]. This can greatly in-
crease the barrier crossing rate for stochas-
tic dynamics, and thereby reduce the length
of runs required for efficient conformation-
al sampling.

MD and MC are not restricted to single
molecules, and in the last few years several



simulations have appeared that have at-
tempted to simulate mesogens in the liquid
and liquid crystal phases [21-31]. These
studies all make use of periodic boundary
conditions, allowing a section of bulk fluid
to be simulated without the need to worry
about edge effects at the walls of the simu-
lation box. However, care must always be
taken to ensure that the simulation box is
sufficiently large that atomic and centre of
mass radial distribution functions are able
to decay to a value of unity within the di-
mensions of the periodic box.

In contrast to single molecule calcula-
tions, in bulk simulations MD is preferable
to Metropolis MC. A trial MC move involv-
ing a small rotation of a dihedral angle near
the centre of a large rod-like molecule can
lead to a large movement in the terminal
parts of the molecule, resulting in collisions
with neighbours in the bulk. This results in
a large number of small rotations being re-
jected, and consequently a rather poor sam-
pling of phase space occurs. Modern MC
techniques such as configurational bias
Monte Carlo are starting to tackle such prob-
lems successfully [32]; however, they have
not as yet been applied to realistic simula-
tions of liquid crystal systems. In contrast
to MC methods, collisions with neighbours
inthe bulk fluid enable individual molecules
within an MD simulation to sample phase
space more efficiently than in the single
molecule case.

The drawback with bulk simulations is
their cost in terms of computer time. Com-
puter time increases with the square of the
number of atomic sites (truncation of short
range interactions and the use of neighbour
lists can improve this slightly), so a typical
MD simulation of a few hundred molecules
will involve the calculation of energies and
forces for several thousand atomic sites at
each time step. Because of this, it is usual
in bulk simulations to employ the united
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atom approximation [21], in which carbons
and attached hydrogens are replaced by sin-
gle extended atomic sites. Use of this ap-
proximation requires a different force field
to that employed in standard molecular me-
chanics studies. Internal molecular struc-
tures tend to be less accurately modelled by
united atom force fields than by all-atom
force fields. However, united-atom force
fields have generally been designed with
intermolecular forces in mind, and may well
produce better intermolecular interaction
energies than some all-atom force fields. In
a series of papers [33—46], Jorgensen has
carried out a large number of MC calcula-
tions for small molecules aimed at produc-
ing a set of transferable OPLS parameters
(optimised parameters for liquid simula-
tion) that model the thermodynamic proper-
ties of small molecules very well. These
have recently been combined with the
AMBER force field [47-50] to produce a
combined AMBER/OPLS force field [51],
which is ideal for the simulation of liquid
crystal systems within the united-atom
approximation [21]. Other united-atom
force fields include the CHARMM force
field [52, 53] and the AMBER force field it-
self.

In bulk MD simulations an initial equi-
librium period of 200-300 ps is usually re-
quired to bring torsional angles into thermal
equilibrium at the simulation temperature.
However, molecular reorientation occurs on
much longer timescales. Extrapolation from
simpler models of liquid crystals suggest
that the growth of a nematic liquid crystal
from an isotropic liquid may require
1-10 ns of simulation time. This is current-
ly at the limit of what can be achieved for
atomic systems. However, the few bulk sim-
ulations that have appeared (see Sec. 3.2.4)
suggest that this is a very exciting area of
modelling that will develop strongly over
the next few years.
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3.1.3 Quantum Mechanical
Techniques

The most natural way to determine molec-
ular structure is by a direct quantum me-
chanical treatment of a molecule. This in-
volves the solution of the Schrddinger equa-
tion for a given nuclear configuration, fol-
lowed by the systematic adjustment of nu-
clear positions till the energy of a molecule
is minimised. At the present time, quantum
mechanical techniques are still extremely
expensive, so that a full ab initio minimisa-
tion of molecular structure is only available
for simple molecules such as methane [54].
Typically, computer time increases with the
fourth power of the number of basis func-
tions required in the calculation, and quan-
tum energy minimisation is therefore ex-
tremely expensive for liquid crystal mole-
cules. Despite this, quantum mechanical
calculations are becoming useful in two
guises. Firstly, accurate single point calcu-
lations can be carried out on energy-mini-
mised structures produced by cheaper tech-
niques such as molecular mechanics. Such
calculations can provide reasonably accu-
rate predictions for electric and magnetic
properties of molecules [55]. However, it
should be stressed that the molecular me-
chanics structure may not be the same as
the molecular structure that would have
been generated had the molecular geometry
been allowed to relax in a quantum mechan-
ical calculation. Secondly, semi-empirical
quantum techniques have made rapid devel-
opments in the last few years [56]. These
techniques are well suited to large liquid
crystal molecules, and are starting to be-
come useful in both the optimisation of mo-
lecular structures and in the determination
of molecular properties [57].

3.2 Applications
of Molecular Modelling

3.2.1 Determination
of Molecular Structure

The determination of molecular structure is
the simplest application of molecular mod-
elling. In the first instance, a series of mo-
lecular mechanics calculations can produce
a set of conformational energy minima for
a liquid crystal that provide excellent infor-
mation on molecular shape. For example,
the mesogen 4-(trans-4-n-propylcyclohex-
yl]benzonitrile (PCH3) possesses a number
of conformational energy minima corre-
sponding to two possible chair conforma-
tions of the cyclohexane ring and rotations
about torsional angles a, b, and ¢ in Fig. 3.
After an initial minimisation of a trial
geometry, the next stage of conformational
searching involves the driving of individu-
al torsional angles [58]. The results of such
calculations for PCH3 using the MM3 force
field [5] are shown in Figs. 4a—c [59]. In its
minimum-energy conformation the phenyl
ring lies in the symmetry plane of the cyclo-
hexylring, with the two torsional angles cor-
responding to the label ¢ in Fig. 3 equal at
118° and —118°. However, the energy bar-
rier corresponding to rotation about c is rath-
er small, about 7.5 kJ mol™" (Fig. 4c). The
dihedral angle b involves the rotation of the
propy! chain with respect to the cyclohex-
ane ring. Figure 4b shows the standard

Figure 3. Structures
of some common
cyano-mesogens.
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shape for this interaction potential, with two
equal lowest energy conformations and a
third energy minimum at 4.13 kJ mol™
above the two low-energy states. The bar-
riers to rotation occur at approximately 0°
(20.69 kJ mol™"), 120°(12.25 kJ mol™"), and
240° (20.69 kJ mol™). Finally, the dihedral
angle a is the end-of-chain dihedral for the
propyl chain. Rotation about a produces two
gauche conformations of unequal energy.
The lowest energy gauche conformation is
at 300° (3.05 kJ mol™' above the ground
state), whilst the second gauche conforma-
tion is splitinto two energy minima, the low-
est of which occurs at 97.2° at an energy of
10.75 kJ mol™! above the ground state. The
energy barriers to rotation occur at 5°
(27.8 kI mol™"), 80° (12.9 kJ mol™"), 125°
(12.8 kJ mol™), and 245° (13.5 kJ mol™).
The assymmetry of the gauche conforma-
tions in Fig. 4a arises from strong repulsive
interactions between the hydrogens on the
terminal methyl group and axial cyclohex-
yl hydrogens as the alkyl chain rotates and
collides with the core of the molecule. If the
carbon chain of PCH3 is extended by two
units (producing PCHS) then the terminal
methyl group of the chain no longer inter-
acts strongly with the cyclohexyl ring when
rotation occurs about the end-of-chain dihe-
dral angle (Fig. 4d). Consequently, the tor-
sional angle energy profile of Fig. 4d is sim-
ilar to that found in most liquid crystals with
long alkyl chains: gauche conformations lie
approximately 3.4 kJ mol~! above the trans
conformation, and the energy barriers to ro-
tation are 20.5 kJ mol™' and 13.9 kJ mol™".

From the dihedral angle energy profiles,
a number of candidates for local potential
energy minima can be identified and indi-
vidually optimised. For PCH3, this results
in the energy minima shown in Table 1, with
the structure of the lowest energy conforma-
tion shown in Fig. 5. PCH3 exhibits a ne-
matic phase between 36° and 46°C [61], and
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Figure 5. Minimum-energy conformation of PCH3.

Table 1. Local potential energy minima for PCH3
[59].

Energy Dihedral Dihedral ~ Population
(kJ mol™") angle a angle b at 46°C
87.34 -175.5° 173.2° 34.65
87.34 175.4° 64.9° 34.65
90.39 -60.6° 176.6° 10.98
90.39 60.6° 61.6° 10.98
91.47 180.0° -62.2° 7.31
98.09 -97.2° 62.2° 0.60
98.09 97.2° 175.6° 0.60
102.41 -93.8° —67.5° 0.12
102.41 93.9° -57.1° 0.12

so application of Eq. (5) at T=46°C for the
nine conformations in Table 1 yields appro-
priate weights for conformer populations,
suggesting that at least five conformers have
significant populations at 46°C. Concerted
rotation about torsional angles in the cyclo-
hexane ring produces a chair conformation
with both the phenyl and propyl groups in
axial positions. MM3 calculations show that
the lowest energy conformation for this ring
is 28.5 kI mol™' above the ground state,
meaning that this conformation is unlikely

to be significantly populated even at very
high temperatures.

Recently, Dunmur et al. [57] have calcu-
lated the energy-minimised structures and
rotational energy barriers for a number of
chiral dopants using the MM2 force field
and the techniques discussed above. In this
work MM2 structures were further refined
using the semi-empirical SCF quantum me-
chanical program MOPAC [62] (Sec. 3.1.3).
Their results are shown in Fig. 6.

3.2.2 Determination
of Molecular Properties

Energy-minimised structures generated by
molecular mechanics or semi-empirical
methods can be used as a starting point for
the calculation of molecular properties.
Dunmur et al. [57] have used MOPAC to
calculate the dipole moments for the mini-
mum-energy structures shown in Fig. 6.
However, results have so far had mixed suc-
cess. Calculated dipole moments can be
compared with those measured in dilute so-
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Figure 6. Energy-minimised structures for a series of
chiral dopants adapted from the work of Dunmur et al.
[57]. Structures were generated from MM2/MOPAC
calculations, and E ;.. is the (highest) rotational en-
ergy barrier calculated from the MM2 force field for
the indicated bonds.

lutions of apolar solvents. For the materials
inFig. 6, good agreement was obtained with
solution measurements for compounds 3
and 5, but rather poor agreement was found
for compounds 1, 2, and 4. The errors have
been attributed to the failure to take other
molecular conformations into account in
calculating the net dipole moment. In prin-
ciple, this can be done using the analysis
above (Sec. 3.2.1), but, in practice, the large
number of possible conformations for com-
pounds 1-5 makes this a rather lengthy
process. Dunmur et al. [57] have also re-
ported calculations of fragment dipoles for
dipolar groups attached to the chiral centre
in compounds 1-5. They report reasonable
correlation between transverse fragment di-
pole moments and measurements of spon-
taneous polarization (P,) in SmC host sol-
vents. In future, the single molecule Monte
Carlo approach (described in Sec. 3.1.2)
linked to a semi-empirical quantum method
may provide a mechanism to generate use-
ful conformationally averaged properties.
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As yet, this combined technique has not
been used for liquid crystal systems.

3.2.3 Determination
of Intermolecular Potentials

Wilson and Dunmur have used molecular
mechanics techniques to model the interac-
tion energies of isolated pairs of liquid crys-
tal molecules [58, 63, 64]. In this approach
lowest energy conformations for liquid
crystal molecules were first generated using
MM2 [7], and these conformations were
used to explore the potential energy surface
for two molecules interacting via nonbond-
ed terms of the form given in Eq. (4). For
the mesogens 4-n-pentyl-4’-cyanobiphenyl
(5CB) and 4-(trans-4-n-pentylcyclohex-
yhcyclohexylcarbonitrile (CCHS, Fig. 3),
distinct lowest energy dimers were found,
corresponding to parallel and antiparallel
arrangements of molecular dipoles, with the
antiparallel configuration energetically fa-
voured [63]. The removal of partial charg-
es from the calculations was found to have
a negligible effect on the spatial configura-
tion of molecular pairs, but largely removed
the energy difference between parallel and
antiparallel arrangements. Wilson and Dun-
mur concluded that dispersive forces pro-
vide the dominant factor in causing molec-
ular association in liquid crystals, but that
dipolar effects are important in determining
the balance between parallel and antipar-
allel molecular pairs. These conclusions fit
well with results from dielectric [65] and
light scattering [66, 67] studies of molecu-
lar association in dilute solutions of meso-
gens.

Luckhurst and Simmonds [68] have used
Lennard-Jones pair potentials to character-
ise the molecular interaction potential
U,,(u,, u,, R) for two liquid crystal mole-
cules with molecular long axes in the direc-
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tions u#; and u,, where R is the vector
between the respective centres of mass. In
order to do this successfully, molecular bi-
axiality must be projected out by taking
Boltzmann-weighted averages of the inter-
action potential over rotations about both
molecular long axes:

Uav (ul U, R)

2w 27
J I ULJ CXP(—ULJ /kBT)dal dOt2
0 0

=" n 2n (7)
| | exp(=ULy/kgT)doy dex,
0 0

where o and o, are the rotation angles
about the molecular long axes of mole-
cules 1and 2, and Uy ;=Uy(u, u,, R)is the
interaction energy of two molecules for giv-
en u;, u,, and R. As above, Uy is equal to
a sum of all nonbonded pair interactions
between molecules 1 and 2. Luckhurst and
Simmonds went on to show that it is pos-
sible to take U, (1, u,, R) and use it to par-
ameterise a version of the Gay—Berne po-
tential [68]. This simplified single site po-
tential can then be used to carry out bulk
simulations of liquid crystal mesophases.

3.2.4 Large-Scale Simulation
of Liquid Crystals

Bulk atomistic simulations of liquid crystal
mesophases are extremely time-consuming
and currently represent the limit of what can
be achieved with today’s computers. How-
ever, inthe past few years a number of (main-
ly) united-atom models of small mesogens
have started to appear in the literature. These
simulations are summarised in Table 2, and
snapshots of molecules taken from a MD
simulation of CCHS are shown in Fig. 7.
Many of the studies in Table 2 suffer from
common drawbacks, namely small numbers
of molecules and rather short simulation

Figure 7. Snapshots showing the structure of CCHS5
in liquid and liquid crystalline phases. (a) Isotropic
phase at 390 K. (b) Nematic phase at 350 K, §=0.62.
(Molecular coordinates are from the simulations car-
ried out by Mark Wilson and Mike Allen [23], cour-
tesy of the authors.)

times. However, the very fact that such sim-
ulations can now be attempted bodes well for
future developments in this field.

In atomistic simulations, molecular order
can be characterised in a number of ways.
For rigid rodlike molecules, orientational
ordering may be defined by reference to the
molecular long axis vector a;:

-1 sz‘:ﬂé lg 8
Oup = Nowr & 5 4iajp =% Oap (8)

where N, is the number of molecules, and
o, B=x, y, z. The director n is the eigenvec-
tor associated with the largest eigenvalue
(A,) of O, and A, can be equated to the uni-
axial order parameter S:

S=A, =(B(n-a))=(P(cosh)) 9

where P, is a second-rank Legendre poly-
nomial, @ is the angle between a molecule
and the director, and the angular brackets
denote an ensemble average. For the flex-
ible molecules often used in atomistic sim-
ulations, a; can be assigned to the eigenvec-
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Table 2. Atomistic simulations of bulk liquid crystal systems.

Mesogen Ref. Niol Study Notes
5CB [20] 64 NpT MD bond constraints 60 ps simulation for charged
and uncharged systems
EBBA?® [24] 60 NpT MC (all-atom) 312 K, 10° moves per molecule
(nematic §=0.8)
pHB® [23] 8,16 Energy minimisation 300 K, 70 ps (crystal)
and NVT MD (all-atom model) 500 K, 116 ps (nematic)
CCHS [21] 128 NpT MD bond constraints Up to 720 ps
[22] 390 K (isotropic)
370 K (nematic S=0.38)
350 K (nematic §=0.62)
THES© [25] 54 NVT MD bond 380 K, 100 ps
and angle constraints (discotic columnar)
nOCBY [26] 64 NpT MD bond Up to 180 ps
n=5,6,7,8 and angle constraints 50CB, 331 K
60CB, 330 K, 339K, 359 K
70CB, 337 K; 80CB, 359 K
2MBCB* [30] 32 NpT MD 230K, 10 ps
with/without twisted periodic boundaries
HBA' {29] 125 NpT MD bond constraints Up to 590 ps, 475 K
(all-atom model) (nematic $=0.86)
PCHS [31] 50, 100 NpT MD bond constraints Up to 360 ps, 333 K
(nematic, isotropic)
5CB [28] 80 NpT MD bond constraints 300 K, 1600 ps (nematic $=0.6)

* 4-Ethoxybenzylidene-4’-n-butylaniline;

" truncated tetramer segment of the liquid crystal polyester of 4-hydroxybenzoic acid [phenyl-4-(4-benzoyloxy-)

benzoyloxy benzoate];

¢ hexakispentyloxytriphenylene;

4 4-alkoxy-4’-cyanobiphenyl;

¢ (+)-4-(2-methylbutyl)-4’-cyanobiphenyl;

f retramer segment of the liquid crystal polyester of 4-hydroxybenzoic acid.

tor associated with the smallest eigenvalue
of the inertia tensor,

Ligg = zml-(r,-25aﬂ —TigTig) (10)

where m; are atomic masses and the atomic
distance vector r; is measured relative to the
molecular centre of mass. Alternatively, in-
dividual values of S can be calculated for
different parts of the molecule. Wilson and
Allen [22] (for CCHS5) and Cross and Fung

[28] (for 5CB) have considered the order-
ing of individual segments within a mole-
cule. Their simulations demonstrate a clas-
sic odd—even effect in the ordering of indi-
vidual bonds in the alkyl chain: odd bonds
have much higher order parameters than
even bonds. For CCHS5 [22], the orientation-
al distribution function f(cos®) for odd
bonds is strongly peaked along the director.
In contrast, f(cos 6) exhibits a broad distri-
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bution for even bonds, and peaks at an an-
gle to the director.

It is interesting to look at the dihedral an-
gles for the alkyl chains in 5CB and CCHS5.
In the nematic phase at 350 K, Wilson and
Allen found that almost 50% of molecules
have the fully extended all-trans (ttt) con-
formation. However, dihedral angle distri-
butions are temperature-dependent. The ob-
served dihedral angle distribution S (¢) can
be written in terms of an effective torsional
potential E (@) (conformational free ener-
gy) [22, 28]:

S(¢)= Cexp(—L;f; (T‘p)j (11)

where C is a normalization factor,
Eeff(¢) = Eex (¢) + Etorsion (¢) + Eint (¢) 12)

where E, . on (@) is the torsional angle po-
tential (see, e.g., Eq. (3)), E;, (@) is due to
internal nonbonded interactions (mainly
1-4 interactions), and E,,,(¢) depends on
the local molecular environment of a mole-
cule in a bulk fluid. E (@) can therefore be
used to monitor the effect of the nematic
field on molecular structure [28]. As the
nematic phase is entered, the effect of
E...(¢) is to favour conformations where
bonds lie along the molecular long axis. In
CCHS this leads to a small change in shape,
so that molecules become more elongated
in the nematic phase.

For the five carbon chains of SCB and
CCHS, the three lowest energy chain con-
formations correspond to ttt, gtt, tgt, and ttg
(Fig. 8). Whilst ttt is the lowest energy con-
formation for SCB and CCHS5, molecular
mechanics predicts that the preferred order-
ing of gauche conformations is gtt, tgt, ttg
owing to favourable chain ring nonbonded
interactions, which reduce the value of
E.(¢) for gauche conformations close to
the core [22]. However, in the nematic phase
the effect of E,,, (@) is such as to produce

et

tgt
Figure 8. Chain conforma-

S Y o
) (g
Oz tions for the mesogen

gtt CCHS.

the preferred ordering tgt, ttg, gtt for gauche
conformations in both 5CB and CCHS. This
order arises because (unlike tgt) the gauche
conformations ttg, gtt cause bonds to lie at
an angle to the director, and so are strongly
disfavoured by the local structure of the ne-
matic fluid. The contributions of E,,,(¢) to
E.;+(¢) significantly increase both the ener-
gy differences between gauche and trans
conformers and the rotational energy bar-
riers between conformers. This is something
that is largely (and incorrectly) ignored in
molecular mechanics studies of mesogens
(Sec. 3.2.1).

A number of bulk simulations have at-
tempted to study the dynamical properties
of liquid crystals. Translational diffusion
coefficients are available from the Einstein
relation, which is valid for long times ¢:

D= () -rto)’) (13)

where r; is the centre of mass position of
molecule i at time ¢ and ¢ is an appropriate
time origin. D may be resolved to monitor
diffusion parallel (D)) and perpendicular
(D) to the director separately. Table 3 lists
values of Dy and D, from a variety of stud-
ies. In most cases a clear anisotropy in dif-
fusion is seen, with diffusion along the ne-
matic director favoured. The one exception
in Table 3 is for the molecule THES. In this
case the simulations are for a discotic co-
lumnar phase, with diffusion favoured per-
pendicular to the direction of order. Both D
and D, are very small for THES.

The small number of molecules present
in the simulations in Table 2 means that no
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Table 3. Diffusion constants from atomistic simulations of liquid crystals.

Mesogen Ref. T (K) Dy(10°m*s™y D (107 m?s7h Dy/Dy s
5CB (28] 300 1.12 0.30 3.73 0.60
CCHS [21] 350 0.554 0.192 2.89 0.62
370 1.076 0.517 2.08 0.38
PCHS (31] 333 0.157 0.046 34 0.58
50CB [27] 331 0.36 0.188 1.91 0.53
60CB 339 0.33 0.168 1.96 0.50
70CB 337 0.316 0.176 1.80 0.50
80OCB 342 0.282 0.177 1.59 0.47
THES [26] 380 0.00984 0.0189 0.05 0.95

convincing atomistic simulations of smec-
tic mesophases currently exist. However, a
number of studies of bilayers and Lang-
muir—Blodgett films have been made in re-
cent years [69-72], and these are starting to
prove useful in studying molecular ordering
in layered structures. One atomistic study
has appeared that attempts to study a chiral
system by molecular dynamics [30]. In this
study twisted periodic boundary conditions
were introduced to look at a (pseudo) chiral
nematic phase. In this initial study only a
very small system (32 2MBCB molecules)
was used, so few definitive conclusions
were available. However, this technique
could, in principle, be extended to look at
large chiral systems in the future.

Finally, it should be stressed that no one
has yet proved the thermodynamic stability
of atomistic model mesophases by growing
a nematic phase directly from an isotropic
liquid. This is a relatively easy process for
single site models [68], but is extremely ex-
pensive for atom-based models, requiring
long simulations (of the order of 10 ns) on
systems of several hundred molecules. On
account of this, data from the simulations
in Table 2 should be treated as preliminary
at this stage. However, the rapid increases
in speed (and reduction in cost) of modern
computers suggest that definitive atomis-
tic simulations may be only a few years
away.
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1 Introduction

This chapter provides a general overview of
the methodology of liquid crystal (LC) syn-
thesis. A certain degree of overlap with chap-
ters on the synthesis of compounds showing
specific mesophases (Vol. 2, Chap. III.1,
IV.1, V.1, V1.1, and VII) is allowed for. Nev-
ertheless, the reader is asked to refer to these
chapters too for more detailed information of
interest. Metallomesogens (see Vol. 2, Chap.
XVI) are excluded from this chapter as are,
for the most part, polymeric LCs (see Vol. 3).
Section 2 of this chapter presents a gener-
al guideline for planning the synthesis of a lig-
uid-crystalline material. Brief comments on
the historical development of LC synthesis
show the change in synthetic strategy with
time as reflected not only in the advance of
new reaction methodology, but also in new
target molecules. The access to more tradi-
tional systems, such as azoxy- and azo-com-
pounds is also described. Section 4 of this
chapter gives an overview of common reac-
tions in LC synthesis used in more recent
times. Section 5 lists typical building blocks,
the methods for their connection with other
building blocks, as well as their retrosynthet-
ic disconnection. Section 6 shows methods of
introducing centres of chirality into LC ma-
terials. Section 7 provides comments on us-
ing LC synthesis for educational purposes and
a note on the purification of LC materials.
As much of the synthesis of LCs is in fact
part of general synthetic organic chemistry,

most of the synthetic methodology can be
referred to in standard reference texts [1],
compendia [2] and reaction data bases [3].
The list [1-3] provided is not exclusive, but
gives the sources the authors of this chapter
frequently consult.

2 General Guidelines

2.1 Thermotropic
Calamitic Liquid Crystals

Liquid crystals derived from rod- or lath-
shaped molecules, forming calamitic phas-
es, have been the most comprehensively
studied. Although no exact theory has been
developed up to now, which relates the
structure of molecules to their specific lig-
uid-crystalline behavior, rules of thumb
have been formulated based on the very
large number of compounds [4] known, and
the related physical data.

Calamitic mesogens usually follow the
general structural formula R'-A-[L]-B-[L]-
C-[L]-D-R?, where R!, R? are terminal
groups, A-D ring systems, and |L] linking
units. At least two ring systems are usually
required for the stabilization of a calamitic
phase; compounds with one ring system and
readily forming dimers are the only appar-
ent exceptions to this rule. The sequence for
mesophase stabilization by terminal groups
R!, R> CN>OCH;>NO,>Cl> CH;>I>
CF;>H is well known. In general, alkyl ter-
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POCI,
HO CH,COOH
DMF

1 " 2
Ry

3

Ry =-CgHy7. -CyHzs

minal groups of odd carbon number give
higher clearing points than those with even
carbon numbers. Furthermore, the flexibil-
ity and conformation within a compound
play a role. Thus the more flexible cyclo-
hexane-moieties may be used beneficially,
especially in lower temperature systems,
while at higher temperatures the more rigid
phenylene group may be preferred as a core-
unit. Interactions among fragments are also
important. While alkoxy-substituents give
better results than alkyl-substituents with
phenyl-groups, in cyclohexane core-units,
just the opposite is true. Predictions about
the characteristics of a substance on the ba-
sis of its structure have been ventured either
by a statistical method using a large set of
compounds [4] with known specific liquid-
crystalline properties or by using neural nets
[5]. Bearing all these factors in mind, fur-
ther issues have to be considered in the
choice of a target molecule, such as the de-
sired chemical and physical properties. For
example stability towards various influenc-
es (moisture, exposure to radiation) and
switching times.

The synthesis of calamitic LCs often
follows the R'-A-[L]-B-[L]-C-[L]-D-R*
scheme [6] in so far as a compound of such
form is synthetically connected up at one of
the points denoted by the separation lines
(-). There are two main approaches.

(1) Tworing systems are synthetically con-
stituted with simultaneous formation of
the linking unit.

aYe

CHO

N(CH2),

—N
N

Scheme 1. Example of the construction
of a heterocyclic unit upon linkage [14].

(2) Two ring systems are synthetically built
up by attaching one ring system to the
preformed linking unit on the other [8].

Most often in cases (1) and (2), the lateral
groups (e.g. substituents on aromatic [ring]
systems) are already in place. This circum-
vents later transformations of functional
groups in complex systems. Moreover the
pool of commercially available functional-
ized ‘subunits’ can be used more extensively.

In very few cases are ring systems them-
selves created upon linkage. Some N-heter-
ocycles (e.g. pyrimidines (see Scheme 1),
pyrazoles {9], oxazoles [10], thiadiazoles
[11]) are, however, prepared in this way, as
are acetals [12] and borinanes [13].

2.2 Columnar Liquid
Crystals

Columnar liquid crystals are derived from
disc- or plate-like molecules. For the most
part, these compounds possess a core unit
with pendant chains (usually 4, 6, or 8). Syn-
thetically two main options of synthesis are
pursued (see Scheme 2):

— construction of the core from fragments
with preformed pendant chains; here pen-
dant chains may be transformed after the
synthesis of the core;

— attachment of the chains to a preformed
(e.g. commercially available) core.
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2.3 Concept of Leading
Structures

In order to glean as much information as
possible from novel compounds, it is impor-
tant to compare them to as many other struc-
tures as possible. A number of leading struc-
tures have been developed over the years.
Vorlander was the first to use one basic
structure with a systematic variation of sub-
structures. Figure 1 shows his main basic
structure and the variations Vorldnder per-
formed on it. In recent times MBBA (4'-me-
thoxybenzylidene-4-butylaniline) has been
the most extensively studied compound, as
well as being the compound with one of the
largest number of substructural variations.
Other structures include SCB (4-cyano-4’-
pentylbiphenyl) for nematics with a high
dielectric anisotropy, and in more recent
times, MHPOPC for antiferroelectrics.

Br

Br

Bl

N/

B

89

Br

Br

(PhyP),PACI,
Cul. PhyP
R
=
S Scheme 2. Synthesis of discotic
AN liquid crystals.

Left: Construction of core from
fragments with preformed pen-

dant chains [15a].

Right: Attachment of the chains
to a preformed core [15b].

-~

3 Brief Survey
of the History of Liquid
Crystal Synthesis

The first materials studied [16] showing an
unusual melting behaviour (double melting
point), later classified as LCs, were isolat-
ed from nature. Thus in 1854 R. Virchow
[17] described the lyotropic liquid-crystal-
line properties of myelin. In 1855, W. Heintz
{18] reported on the stepwise melting of
magnesium myristate, and the first unwit-
ting use of liquid-crystalline substances
probably dates back to the soaps of the Phoe-
nicians, Sumerers, Egyptians, and Israelites
[16¢]. In 1910 D. Vorlidnder [19] published
a detailed treatise on the liquid-crystalline
properties of fatty acid salts. The prerequi-
site for these studies was the capability of
isolating fatty acids in a pure, uniform state.
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Also the observations of P.Planer [20]
(1861) on the cholesteric phase of choleste-
ryl chloride and by Reinitzer [21] (1888) on
cholesteryl benzoate and acetate belong
here, although in both cases chemical trans-
formations had been undertaken on the nat-
ural products (chlorination; esterification
with acetic and benzoic acid anhydride, re-
spectively) [22]. Also today nature is a
source of mesogenic structures (steroids
[23a], triterpenes, carbohydrates [23b-d])
and of precursors of liquid-crystalline com-
pounds (see sources of chirality).

A

NCO,NCS,CH,CN
C,H,CN,HC=CHCN,C=CCN

Figure 1. Concept of basic structures in
liquid crystal synthesis: (a) basic struc-
ture developed by D. Vorldnder and its
modification; (b) possibilities of deriv-
ing liquid crystal structures by exchang-
ing a single subunit in MBBA,; (c) struc-
tural modifications of 5CB (4-cyano-4’-
pentylbiphenyl).

In 1890 L. Gattermann and A. Ritschke
[24] reported on the synthesis of 4,4’-dime-
thoxyazoxybenzene by the reduction of 4-
methoxynitrobenzene in sodium methano-
late, at that time already a known reaction
[25]. 4,4'-dimethoxyazoxybenzene re-
mained one of the focal points for the LC
chemist over some years [26]. Other azoxy
compounds showing liquid crystalline
behaviour were later synthesized, such as
4,4’-azoxychalcones, azoxy benzoates, and
azoxy cinnamates, for which the first ho-
mologous series (of alkyl esters) was inves-



3 Brief Survey of the History of Liquid Crystal Synthesis 91

Table 1. Typical substances with liquid crystalline behaviour and their preparation (from D. Vorldnder et al.,
before 1910).

Liquid crystal target molecules Precursors, starting material

o]

o
R R
RCHO

(Aldol-condensation)
Ref.: {31,43¢,1]

H
R—@ R@—CHO H,NPh-R'
N @ RI

Ref.: {31a,d,32-34,42]

(o] @]
I O T

(Perkin)
Ref.: [35,48]

Ref [32d] (prepared by Friedel-Crafts-acylation)

Ref.: {36]

commercially available tolanes were also used (1908)

Ref.: [32d,35b)

®
R—@— N=N @— R R‘@ NO, (Reductive coupiing, using: NaOCH,
é or As,0, OH")

Ref.: [24)
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tigated [27]. With the turn of the century,
D. Vorliinder started his historic methodical
studies on the synthesis of LC compounds,
taking advantage of the ‘lego-scheme’ [28],
that is, systematically exchanging one part
(block) in the molecule for another. In an
overview on liquid-crystalline substances
by D. Vorlidnder [29] in 1908, a number of
key chemical structures can already be not-
ed, some of which are shown in Table 1 as
are typical synthetic procedures of the time.
By 1924 D. Vorlidnder [30] had synthesized
over 1000 LCs and was able to draw gener-
al conclusions about their phase behaviour
from their molecular structures.

Many structures included an aromatic
subunit. At the time, synthetic aromatic
chemistry was at its height and electrophil-
ic aromatic substitution reactions (Sg-reac-
tions) such as Friedel-Crafts alkylations
[37] and acylations [38], nitrations [39] and
diazotisations [40] were effectively used.
Vorlidnder and others centred most proce-
dures for the elongation of rod-like struc-
tures on carbonyl-reactions. It must be not-
ed, however, that the scope of most of these
reactions had not been realized until the late
1940s. Typical preparations of imines/anils
(azines) [41] via aldehyde/ketone—amine/
aniline (hydrazine) condensations have re-
mained standard synthetic methods of today
[42] (Scheme 3).

Olefinations (preparations of alkenes) by
Knoevenagel and aldol condensations [43],
and the Perkin reaction [44] have been com-
plemented by Wittig [45] or Horner olefina-

cnp@—cm + +|2N—<i>~(cnz)3cn3

8 9

C;HsOH

10

tions [46] and organometallic C-C cou-
pling reactions (Heck reaction) [6, 47].
Complications resulting from a product
mixture of E/Z isomers had been noted
early on and it had been shown that only the
E-isomers are mesomorphic [48]. Wittig re-
actions are known to give E- and Z-alkenes,
while Knoevenagel condensations with
aromatic aldehydes give exclusively trans-
or (E)-products. Nevertheless, much work
on the Wittig olefination has subsequently
been devoted to the selective preparation of
E- or Z-alkenes by the right choice of sol-
vent, temperature and base system [49]. In
many cases a chemical or photochemical
isomerization of E/Z mixtures leads to a se-
lective conversion to the desired (E)-isomer
{50].

Although Vorlédnder included studies of
molecules with cyclohexane core units [51],
heterocyclic systems, and biaryls, it was not
until after a much later date that those
systems were explored more systematical-
ly. Thus in the 1920s, not many versatile re-
actions were known for the preparation of
cyclohexanes [52]. It was only when the hy-
drogenation of arenes, with concurrent
problems of cis-/trans-isomerization of 1,4-
substituents in the hydrogenated products,
was solved that more extensive research on
LC compounds with cyclohexyl units devel-
oped in the 1970s. Heterocyclic compounds
were investigated systematically by Schu-
bert and Zaschke, who continued the city of
Halle’s tradition of LC research, in the
1950s and 1960s. Gray studied intensively

cu;,o@wm—@—- (CH5):CHs
Scheme 3. MBBA (4’-methoxyben-

zylidene-4-butylaniline) [7].
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Perkin-Reaction

H5020—©—CH0 +

8b

o)
H,C J(o
H,C
\\g

1

Horner-Emmons-Olefination

CH,0 ~<_i_>—cw2 ﬁ(oa)2 + n-C,Hy @CHO
o

13 8c

R. Steinstraper, 19721%84

Heck-Coupling

ROQ& * \_—/N
15 16

D.W.Bruce et al., 1988147¢]

Scheme 4. Typical methods of olefination.

a large variety of carbocycles including ra-
tionalization of the effects of lateral substit-
uents. The preparation of these and other
more recent compounds will be covered in
the next chapter.

4 Common Reactions in
Liquid Crystal Synthesis

The following paragraphs on aryl/aryl(het-
eroaryl)- and aryl/alkyl-bond formation
centre on organometallic mediated C-C
coupling reactions. For want of space, cer-
tain methods have had to be omitted and on-
ly those most commonly used have been in-
cluded. Indeed, in certain cases combina-

Pd(OACc),
P(o-tolyl)

Et;N/CH,CN

NaOAc
——  H czo—< >—
180C s \\_ coon

12

R. Stoermer, Fr. Wodarg, 192848

14

(only trans) (51%)

17

tions of organometallic reagents and metal
catalysts that are not listed here may be pref-
erable. For a more complete list of possible
methods of organometallic C—-C bond for-
mation reactions, the reader is referred to
references [1b] and [6].

4.1 Methods of Aryl-Aryl
Bond Formation

Compounds with biaryl, triaryl and aryl/
heteroaryl substructures account for one of
the largest groups of LC materials. In for-
mer years, the parent compounds biphenyl,
terphenyl and related arenes and hetero-
arenes were used as precursors and were se-
lectively functionalized [51], for the most
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part by Sg-reactions, to give the desired lig-
uid-crystalline materials. In more recent
years, prefunctionalized aromatic com-
pounds are joined by metal catalysed C-C
coupling reactions [6, 53]. Historically, one
of the first of such reactions was the Ull-
mann synthesis of biaryls [54a], in which
two molecules of aryl halide react in the
presence of finely divided copper [54]. Al-
though reaction temperatures are quite high
and yields are not always good, a number
of functional groups (F [55], alkyl, alkoxy,
NO,, ROOC) are tolerated. Other groups,
however, deactivate the process (NH,, OH,
COOH, bulky R). For the most part the syn-
thesis has been employed for symmetrical
biaryls, although unsymmetrical biaryls
have also been prepared [56]. Nevertheless,
the Ullmann synthesis has been used effec-
tively in the preparation of LC material.
With the developments in organo-palla-
dium and -nickel chemistry, a plethora of
C-C coupling reactions have been devel-
oped for the synthesis of biaryls and homo-
logues [6, 53]. Thus haloarenes can be cou-
pled with aryl-magnesium [58], -zinc [58c,
58f], -lithium [6], -tin [59], -mercury [59]
-copper [59], -zirconium [59], -titanium [6],
and -fluorosilanes [60] in the presence of
palladium {61a] [(PPhs),Pd(Ph)I] [61D]
or nickel complexes [Ni(acac), [58al,
NidppCl, [58b], Ni(PPhs), [58b], Ni(PPh;),

e N s x( )r

18 19

MetL,,
R R

20

M = Mg,1%8) Zn, 158¢.0 | 16] g, (59) Hg 1591 Gy 1991 Zp 199), Tij €] SiF 50
Met=Ni, Pd, Pt, Rh
X = Hal, OSO,CF,, OCF,
Scheme 5. Metal catalysed aryl-aryl coupling reac-
tions.

[58c]]. These methods have also been used
extensively for the coupling of heteroarenes
[62].

Electro-reductive reactions in the pres-
ence of Ni, Pd, Rh, Pt are also known [63],
but usually [63b] are only applicable to the
synthesis of symmetric biaryls.

In many instances, the scope of the reac-
tions listed above is limited as to the function-
al groups that are unaffected. Except for aryl-
stannanes and arylfluorosilanes, carbonyl
functionalities are often not compatible with
the reactions. A number of cross-coupling re-
actions are known of aryl triflates [64a] and
arylfluorosulfonates [64b] with aryl stan-
nanes catalysed by Pd(0)-complexes (Stille
reaction) [65], aryl zinc chlorides [64b], and
aryl boron compounds (boronic acids and es-
ters, Suzuki reaction [66]). Aryl stannates are
relatively stable to air and moisture and many
functional groups are tolerated. The coupling
reaction using Ar—X/Ar-SnR; can be accel-
erated by Cu(l) [67] or Ag(]) [68] catalysis.

Because of its simplicity and versatility,
due to the fact that most functional groups
are not affected by the reaction, the Suzuki
coupling has become one of the most fre-
quently used C—C forming reactions for the
preparation of biaryls, aryl/heteroaryls, bi-
heteroaryls and homologes in liquid crystal
science [45b, 53, 69]. The corresponding
aryl boronic acids can easily be prepared
from aryl bromides by transmetallation with
boric acid trimethyl ester. Other advantages
of this reaction lie in the easy work-up, as
there are virtually no side-products from
homo-coupling as seen in the other reac-
tions mentioned. In some coupling reac-
tions Ar—B(OH),/Ar-X, especially when
Pd(PPh;), is used as catalyst, by-products
Ar—Ph were found [70], Ph stemming from
the ligand of the catalyst. In these cases, the
use of another palladium catalyst with dif-
ferent ligands Pd[P(tolyl);],, Pd(AsPhs),
often gives better results [70]. Toyne and
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CN
CsHﬂ-@‘B(OH)z +
CF450,0
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Pd(PPhy),

LiCl
CsHyy

23
Scheme 6. After Hird et al. [53].

others have shown that it is possible to
lithiate ortho- to a ring-fluorine [69b], thus
enabling the transformation of fluoroaryl
halides into the corresponding boronic
acids and the subsequent C-C coupling.
A most valuable selectivity of coupling has
also been demonstrated using mixed diha-
logenoarenes or halogenoaryl triflates. The
Suzuki-coupling has also been used for the
preparation of liquid-crystalline polymers,
where either p-bromoaryl boronic acids are
polymerized or aryl-1,4-diboronic acids and
1,4-dibromoarenes are copolymerized [71].

4.2 Alkyl-Functionalization
of Arenes

The two most frequently used ways of intro-
ducing a n-alkyl chain into an aryl system are:

— Friedel-Crafts acylation with subsequent
reduction of the keto-functionality;

— C-C cross coupling of arylhalides/tri-
flates with alkylmetallates using palladi-
um catalysis.

In contrast to Friedel-Crafts alkylations,
which with longer chain n-alkyl halides usu-
ally give a substantial proportion of the cor-
responding secondary alkylarenes, Friedel—-
Crafts acylation also goes well with longer
chain n-alkanoyl chlorides (and anhy-
drides). There are numerous methods for the
reduction of the resulting arylketones. Most
often used are reductions with LiAlH,/

AlCl; [72], Et;SiH/CF;COOH [58e, 73],
Et;SiH/CF;SO;H [74] (for reduction of
hindered or electron-deficient arylketones),
the classical Wolff-Kishner reduction [75]
and its Huang—-Minlon modification [76],
although the high reaction temperatures
required in the last of these are not compat-
ible with all other functional groups. BH; -
Py/CF;COOH [77], NaBH,/BF; - Et,0
[78], and NaBH,/CF;COOH [79] have also
been used as reducing agents.

Alky!l Grignard reagents prepared by
standard methods from alkyl bromides
undergo cross-coupling reactions with aryl
halides and tosylates using palladium
(PACl,dppf) catalysis [80]. Alkylboranes
also undergo this reaction, where the reac-
tivity gradation of the leaving group is
I>Br>OTf>Cl as shown in Scheme 7.
This allows for an introduction of an alkyl
chain to an aryl system with the retention of
a second, less reactive leaving group which
can be used in a subsequent coupling reac-
tion with a different fragment [66a].

cBHﬂ—B@
Pd(PPhy),
LisPO, / dioxane
24 65C, 5h 25
reactivity: | > Br > OTf>> CJ

Scheme 7. After Oh-¢ et al. [66a].

4.3 Aryl-Cycloalkyl
Linkages

There are two major routes for the prepara-
tion of directly linked aryl—cycloalkyl sub-
structures:

— the direct linkage of the two substruc-
tures;

— the construction of the alicycle from a
precursor already linked to the arene.
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4.3.1 4-E-Substituted
Cyclohexylarenes

A synthesis of 1,4-E-disubstituted arylcy-
clohexanes via direct transition metal (e.g.,
Pd, Ni) catalysed cross-coupling [6] poses
major problems due to B-elimination and
lack of chemo- and stereo-selectivity. In
principle, metal cycloalkyls can be reacted
with aryl halides or tosylates. Nevertheless,
for many sec-halides, even the preparation
of the cycloalkyl metals leads to side-prod-
ucts stemming from f-elimination, espe-
cially in the case of direct metallation to cy-
cloalkyl-zinc, -aluminum, and -tin. Cyclo-
alkyl-magnesium and -lithium are more
stable, albeit less reactive in the coupling re-
actions. Bis(cycloalkyl)zinc can be pre-
pared by in situ transmetallation of the cy-
cloalkyl-lithium intermediate 6], obtained
by treating the cycloalkyl halide with lithi-
um metal and zinc chloride using ultrasound
[81]. Bis(cycloalkyl)zinc undergoes cross-
coupling with various aryl-bromides [6].
The use of bidentate nickel! and palladium
catalysts with fixed cis-configuration, such
as 1,1’-bis(diphenylphosphino)ferrocene-
palladium(Il)dichloride [PdCl,(dppf)] and
1,2-bis(diphenylphosphino)ethane-nick-
el(IDdichloride [NiCl,(dppe)] suppresses
P-elimination [82]. An inverse addition of
readily accessible arylmetals to cycloalkyl
halides cannot be recommended in general,
as the oxidative addition of the Pd(0) spe-
cies to the cycloalkyl halide is slow [83] and
B-elimination is more likely to occur.

A frequent method of coupling aryl frag-
ments to cycloalkanes is the addition of aryl-
lithium [84] or arylmagnesium compounds
(Grignard reagents) [45b, 85] to cyclohex-
anones with subsequent dehydration of the
ensuing tertiary alcohols to the correspond-
ing alkenes, which are then hydrogenated.
Reactive functionalities on both the aryl and
the cycloalkyl substrates, such as formyl,

carboalkoxy or aikanoyl, have to be protect-
ed before the coupling or have to be intro-
duced at a later stage of the reaction se-
quence.

In the Nenitzescu reaction, an alkanoyl
moiety and an aryl group are added simul-
taneously to a cyclohexyl ring at positions
1,4 [86]. The reaction is not well researched
in its scope and is more widely used to pre-
pare 1,3-disubstituted cyclopentanes (sce
below). Nevertheless in the synthesis of 4-
alkylcyclohexylarenes it can be useful, as
the substrates (arene, alkanoyl chloride and
cyclohexene) are readily accessible.

As an example of a route of the second
type (see Sect. 4.3.1), the Diels—Alder reac-
tion is one of the classical ways of synthe-
sizing six-membered ring systems. 2-Aryl-
substituted dienes react with mono-activat-
ed alkenes (alkenes possessing one elec-
tron-withdrawing group such as cyano, al-
kanoyl, or alkoxycarbonyl) to form regiose-
lectively 1,4-substituted arylcyclohexenes
[87], which can be hydrogenated to the cor-
responding arylcyclohexanes.

4.3.2 3-Substituted
Arylcyclopentanes

The Nenitzescu reaction [88] of alkanoyl
chloride, cyclopentene, and an arene com-
ponent directly leads to 3-alkanoyl substi-
tuted arylcyclopentanes. The scope of the
reaction, as with the cyclohexene analogues
(see above), has not been researched suffi-
ciently. The alkanoyl functionality can be
reduced to alkyl. The carbonyl group can al-
so be used to construct further ring systems.

Grignard reaction of aryl-magnesium or
-lithium on 3-substituted cyclopentanones
leads to 3-substituted 1-arylcyclopentanols,
which can be further transformed to arylcy-
clopentanes via the corresponding arylcy-
clopentenes, as described above for 3-sub-
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stituted cyclopentanones. Substrates for the
Grignard reaction, can often be furnished
from cyclopentenone (Michael addition) or
from 4-substituted cyclohexanones (via ox-
idative cleavage and ring contraction).

4.4 Linking Blocks via
Simultaneous Construction
of Ethenyl and Ethynyl
Bridges: Tolanes and Ethenes

For many decades the standard method of
preparation of diphenylacetylenes (tolanes)
based upon the dehydrohalogenation of
diphenylbromoethenes or diphenyldibro-
moethanes [89], which are easily available
by hydrobromination and bromination, re-
spectively, of the corresponding stilbenes
[90]. This method of preparation can be
used for diheteroarylacetylenes and phenyl-
heteroarylacetylenes, usually with equal
ease.

In recent years a multitude of metal-pro-
moted C-C coupling reactions of arene-1-
alkynes to haloarenes and haloheteroarenes
[91] have been reported. A prerequisite
for the use of these reactions is the ready
availability of the corresponding arene-1-
alkynes. Bromo- or iodo-arenes with tri-
methylsilylacetylenes in the presence of Cul
and palladium/triphenylphosphine complex
give trimethylsilylethynylarenes which are
readily desilylated to the arene-1-acetylenes
[69a]. Alternatively, aryl halides can be re-
acted with commercially available 1-meth-
ylbut-3-yn-2-o0l with subsequent deprotec-
tion of 27 [92].

This second method, run as a one-pot re-
action of 2-methylbut-3-yn-2-ol (26) with
two different aryl components Ar'X and
Ar’X, added at different temperatures, di-
rectly leads to diaryl/diheteroylacetylenes
28 [92] (see Scheme 8).

ArX/PA(PPhy),/Cul

/ EtyBnN*CI/5.5 N NaOH /
= \ OH Arl—— OH
toluene /20 C \
26 27
ArX? 70-80C
Al ——Ar
Y also hetary!
28

Scheme 8. After Ames et al. [92a], deprotection of
27 to give Ar'C=CH occurs with refl. NaOH (aq) and
after Carpita et al. [92b].

When coupled to arenes by palladium ca-
talysis, arene-1-alkynes are often used as
their metallates. For this purpose the al-
kynes are first lithiated and subsequently
transmetallated. Although a wide range of
alkynes has been reacted under these con-
ditions, certain electrophilic functional
groups undergo transformation and are not
stable under these conditions.

Arene-1-alkynes can be coupled to aryl
halides (iodides and bromides) in the pres-
ence of palladium phosphine complexes to
yield tolanes directly [6, 93]. Reaction con-
ditions usually are mild and many function-
al groups are tolerated.

Also, multiple coupling reactions are
known to proceed in high yields and have
been used in the preparation of discotic
compounds [15, 94, 95].

The preparation of substituted diaryl-
ethenes, stilbenes, and analogues (e.g.,
stilbazoles) has been achieved by Wittig
[45] or Horner—Emmons reactions [46] of
substituted benzaldehydes and benzyl-
triphenylphosphonium halides or benzyl-
diethoxyphosphonates (see Scheme 4). 4-
Methylpicolinium salts [96a,b] or 4-meth-
ylpicoline-N-oxides [96c], upon reaction
with benzaldehydes under basic conditions
lead directly to the corresponding stilbazo-
lium salts or stilbazole-N-oxides, respec-
tively. As of late, the metal-catalysed cross-
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styrenes. As with multiple acetylenations,
multiple vinylations of aryl oligohalides are
possible.

coupling of vinylarenes, styrenes, and aryl
halides, known as the Heck reaction [47],
has been used frequently in the synthesis of

5 Building Blocks and Their Precursors
The building blocks for liquid crystals and their precursors are shown in Table 2A-G.

Table 2 (A). Diarylethenes/Bisheteroarylethenes.

Target structure
R—R'

number of LCs with
the given structure )

Precursors of target

R-Z/R-Y

starting materials for the
given target structure; in
most cases means R-Y +
R-Z under the conditions
found in the ref. given.

RZ ©=> R-X

R-X is precursor of R-Z

R-X —= R-Z
R-X is reacted to give R-Z
{R-X is precursor of R-Z)

Precursors of precursor #)

R-L; R-N

precursors of the compounds listed
under heading 2 in the same line;
the structure on the left (R-L) is
the precursor of the left compound
of heading 2, in this case of R-Z.

RZ => R-L

R-L is precursor of R-Z

R-L —= RZ
R-L is reacted to give R-Z
(R-L is precursor of R-Z)

"Nk

(996)

R'-CHO / Ph;P'CH,R X
(Wittig-reaction)

Ref.: [97)

R'CH,X — R'-CHO
where R'= Ar; Kroehnke-reaction

R'-COCH, R'-CH ,0H
R-CH,X,  where X =Br, Ci

RCHO / (Et0),P(OICH,R
{Horner-Emmons-reaction)

Ref.: (98]

R-COOH, R'-CH ,0H

R-CH,X, (Arbusov-reaction)
Ref : (99)

R \\ R-X;  where R = Aryl, Heteroaryl

and X @Br, |, OTf

{Heck-reaction)
Ref.: [100]

(o]
R' —K; {reduction to alcohol
R and subsequent elimination)

Ref.: [101]

RCH,COCI, where R = Ar, Hetaryl
{Friedel-Crafts-Acylation)

) Optional. ?) As taken from database Ligeryst [4].
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Table 2 (B). Acetylenes, diacetylenes.

99

Target structure
R—R'

number of LCs with
the given structureb)

Precursors of target

R-Z /R-Y

starting materials for the
given target structure; in
most cases means R-Y +
R-Z under the conditions
found in the ref. given.

R-Z —> R-X

R-X is precursor of R-Z

R-X — R-Z
R-X is reacted to give R-Z
(R-X is precursor of R-Z)

Precursors of precursor 2)

R-L; R-N

precursors of the compounds listed
under heading 2 in the same line;
the structure on the left (R-L) is
the precursor of the left compound
of heading 2, in this case of R-Z.

R-Z —> R-L

R-L is precursor of R-Z

R-L — R-Z
R-L is reacted to give R-Z
(R-L is precursor of R-Z)

R
>:-- R
X
(elimination)
Ref . [89]
R =——SiMe, / R-X, R™-X
where R = Ar, Heteroaryt:
X =Br, OTf
l | Ref.: [91]
R
—’»: OH / R-X, R*-X
132 where R = Ar, Heteroaryl,
X=Br.OTf
Ref.. [92)
HoN-N N-NH, o 0
R R R R'
Ref: {102a, reagent HgOl:
[102b, reagent: MnO 2]
%) Optional.

)y As taken from database Ligcryst [4].

@0

(forR=R):

R————H

(Eglington/Glaser-reaction)

Ref.: [103]

(Cadiot-Chodkiewicz-coupling)

Ref.: {104

OTs
R—Z—LPh /R' —
0

OH
Ph ~{ / (RIR") ——H

OTs

Ret. [106]

Br
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Table 2 (C). Cyclohexanes.

Target structure
R—R'

number of LCs with
the given structure b)

Precursors of target

R-Z/R-Y

starting materials for the
given target structure; in
most cases means R-Y +
R-Z under the conditions
found in the ref. given.

RZ ©=> R-X

R-X is precursor of R-Z

R-X —= R-Z
R-X is reacted to give R-Z
{R-X is precursor of R-Z)

Precursors of precursor 2)

R-L; R-N

precursors of the compounds listed
under heading 2 in the same line;
the structure on the left (R-L) is
the precursor of the left compound
of heading 2, in this case of R-Z.

RZ —> R-L

R-L is precursor of R-Z

RL — RZ
R-L is reacted to give R-Z
(R-L is precursor of R-Z)

R—QRI H2

{reduction})

Ref.; {106]

For the synthesis
of 1,4-disubstituted phenylenes

please consult chapters 4.1., 4.2, 4.3..

<)~

Nenitzescu-reaction

Ref.: [45b,85]

Ref.: [86,88]
R NG
L [ |
(6967) NS
R
(reduction) [4+2]-cyctoaddition
Ref.: (87} for R'= COOEt,  Ref.: [87]
R
R’ R’ o RMX
OH
(dehydration/reduction)

Grignard and related reactions
Ref.: [45b,85]

%) Optional.

®) As taken from database Ligceryst [4].
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Table 2 (D). Pyrimidines.
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Target structure
R—R'

number of LCs with
the given structureb)

Precursors of target

R-Z/R-Y

starting materials for the
given target structure; in
most cases means R-Y +
R-Z under the conditions
tound in the ref. given.

RZ => RX

R-X is precursor of R-Z

R-X — R-Z
R-X is reacted to give R-Z
(R-X is precursor of R-Z)

Precursors of precursor #)

R-L; R-N

precursors of the compounds listed
under heading 2 in the same line;
the structure on the left (R-L) is
the precursor of the left compound
of heading 2, in this case of R-Z.

RZ =—=> R-L

R-L is precursor of R-Z

RL — R-Z
R-L is reacted to give R-Z
(R-L is precursor of R-Z)

N__N
R
(2384)

NHHCI CHO CH(OEY) ,
R 4 / R . RCH,COOH
NH, CHOE CH(OEY)
(CHNMe,)
Ref.; (107,108}
ClOy 4/
NH'HCI __ N\ CH(OEY) ,
R ‘4 R—\ R . RCH,COOH
NH, NMe, CH(OEY),
Ref.. (109
et 1109 , for R'=R"S- : R'Br + S=C(NH 2);
R'=R"S- can be modified subsequently to R'=-NC
NHHCI COOE CH(OEY), COOEt
R —{ R R . R-Hal +
NH, COOEt CH(OEY) COOEt

(subsequent reduction with POCl,}

Ref.: [110)

%} Optional.

by As taken from database Liqcryst [4].




102 IV General Synthetic Strategies

Table 2 (E). Triazines/pyrazines.

Target structure Precursors of target Precursors of precursor 2)
R—R' R-Z/R-Y R-L; R-N
) starting materials for the precursors of the compounds listed
number of LCs with . . . N oo
the given structureb given target structure; in under heading 2 in the same line;
9 ) most cases means R-Y + the structure on the left (R-L) is
R-Z under the conditions the precursor of the left compound
found in the ref. given. of heading 2, in this case of R-Z.
R-Z =—> R-X R-Z —> R-L
R-X is precursor of R-Z R-L is precursor of R-Z
R-X —= RZ RL — RZ
R-X is reacted to give R-Z R-L is reacted to give R-Z
(R-X is precursor of R-Z) (R-L is precursor of R-Z)
(for R"= H}
BrCH,COAr / 2x R'CONHNH , CH;COAr / R'COOH
Ar Ref.: [111)
'f )\KR" {for R* = H, Alkyl)
|
N__N Ar
h R" . . .
. NS Ar R Ar R Ar R
f |J\r
(200) Z"~0 H,NN NOH o) NOH H NN NOH
R + R"C(OEt),
Ref.: [112]
= RY: NH;
(for R =R): 2X ACOCH,NH, — ~—— 2 X ACOCH ,Hal
Ref.: [113,(117)} {not isolated,
In situ  reaction to pyrazine)
Ref.: [115a]}
/ ArCOCH ;N —
ArCOCH ;NH,"CI ArCOCH ,Hal
(ArR) —
Ref.: [114,115]
srefansl \ ArCOCH 5Ny Ref.; [115b]
o
N ~
A ArCOCHO HoNCH,CHRNH,
Ref.: [(114),117]
(251)
(only for R = OH:)
Ar'COCHO / HoNCOCH ,NH;"CI
Ref.: {116]

) Optional. °) As taken from database Ligcryst [4].
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Table 2 (F). O/O-, S/O-, S/S-acetals, 1,3,2-dioxaborinancs, orthoesters.

Target structure
R—R'

number of LCs with
the given structure b)

Precursors of target

R-Z/R-Y

starting materials for the
given target structure; in
most cases means R-Y +
R-Z under the conditions
found in the ref. given.

R-Z c©=> R-X

R-X is precursor of R-Z

R-X —— R-Z
R-X is reacted to give R-Z
(R-X is precursor of R-Z)

Precursors of precursor 2)

R-L; R-N

precursors of the compounds listed
under heading 2 in the same line;
the structure on the left (R-L) is
the precursor of the left compound
of heading 2, in this case of R-Z.

RZ —> R-L

R-L is precursor of R-Z

Rt — R-Z
R-L is reacted to give R-Z
(R-L is precursor of R-Z)

o Ho R'CH,OH £t
{Oxidation)
e | e | D =
R'COCH
o HO R Et0OC
809 . % Ox.. ref [ib, pp.607]
©9 Ref. (118-120] Red.: ref. [1b, pp.619]
o HO HO HO
R—<: e RCHO / :>—R :>—R = }R
s HS Br HO
(70) Ref.: [120,121]
s HS Br HO—
R~—<: >—R' R'CHO / }R :>-R ~ :>—R
s Hs Br HO -
(74) Ref.: [120-122}
o HO, HO EtoOC EtoOC
R‘<: B-R B-R / :>—R = YR = > R ==> R-Br
© HO HO Et00C NC
212 ‘
@12 Ref.: [123a-c] Ref.: [123d]
NH,CI
__<_/_ ° o Fron R RCN COOEt
R o+ R R _éoc:H3 R—éCHon OC;Hs .
—O0 OCH, CH,OH or:
, COOEt
29) Ref.: [124] (CH;0);CN 4+ R'MgBr

~—

Optional. ) As taken from database Ligeryst [4].
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Table 2 (G). Thiophenes, furans, pyrazines, thiadiazoles.

Target structure
R—R’

number of LCs with
the given structure b)

Precursors of target

R-Z/R-Y

starting materials for the
given target structure; in
most cases means R-Y +
R-Z under the conditions
found in the ref. given.

RZ —=> RX

R-X is precursor of R-Z

R-X — R-Z
R-X is reacted to give R-Z
(R-X is precursor of R-Z)

Precursors of precursor 2

R-L; R-N

precursors of the compounds listed
under heading 2 in the same line;
the structure on the left (R-L) is
the precursor of the left compound
of heading 2, in this case of R-Z.

RZ —> R-L

R-L is precursor of R-Z

RL — R-Z
R-L is reacted to give R-Z
{R-L is precursor of R-Z)

631)

P, 4S10 < >‘
or Lawesson's

reagent® o O
ref.;[125,131]
NV
|0

Y = C=CH [62a,126a}
for R = Ar, Hetaryl, see [62a}

N—N
R’QS»\R'

(386)

s HN—NH
or Lawesson's R :: :t RI
reagent’ o O

ret..{11,127,128,129} \{}

R-COCI + R'CONHNH,

R’&}\R'

PS4 / R _( NH>1 .
of Lawesson's R
3 o O

reagent
(41) ref..[130]
POCI, R .ﬂ R
o O
ﬂ ref..[131]
R o R
s\
(89) R-Y / X o R

Y = C=CH [132} for R = Aryl, see [62a]

o O

ref.;[133]

) Optional.

®) As taken from database Ligeryst [4].
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6 Chirality:
the Preparation and Use
of Enantiomers

With the advent of ferroelectric liquid crys-
tals [134], the development of leading struc-
tures encompassing at least one centre of
chirality has become of ever increasing im-
portance [135]. In fact, for most of the mod-
ern technical applications (twisted nemat-
ics, ferroelectrics, and colour pigments) as
well as for many of today’s academic re-
search interests in liquid-crystalline phases
(TGBA phases, blue phases, helical inver-
sions) chiral compounds are needed. Of spe-
cific interest is the creation of centres of chi-
rality with a substituent of high polarity, the
ensuing dipole moment often leading to

high spontaneous polarization (Ps) if the
compound has a SmC phase. Steric fixation
of groups on the stereocentre is often want-
ed and leads to short helical pitches and
also often to high spontaneous polarization.
In the following text, typical chiral substruc-
tures for liquid crystal materials and meth-
ods for their synthesis are summarized.

6.1 Synthesis

For the synthesis of chiral-liquid crystalline
material virtvally all known techniques
have been used.

(1) Many companies offer a good selection
of chiral compounds, both from the nat-
ural chiral pool {137] and those that are
industrially made, non-natural products
(see also Tables 3 and 4). Why make,

Table 3. Commercially available compounds used directly as chiral substructures in liquid crystal synthesis.

OH
HooC \/kﬂ /k.
COOH COOH

(R)-3-methyladipic acid (SHactic acid
ref.; [140} ref.: [141]
R o/\)\/\)\ \/M
citronetiol (S)-1-methyiheptanol
ref. (14,144] ref.; [145)

OH OH

CooH Ph” > COOH

mandelic acid
ref 1 [143]

(R} or (S)y-hydroxybutyric acid
ref.: [142)

OMe

. © oM
\)\/OH Ph )\/

(R)- or (S)-2-methoxy-
-2-phenylethancl
ref [147]

(R} or {S}-2-methylbutanol
ref.: [145,146]

Table 4. Commercially available chiral starting materials for chiral substructures in liquid crystal synthesis.

CH,OH
S
°)<° S R >CooH
ref. [149] ref. {150] ref. [151]

HO OH

ref. {152}
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what you can buy at a reasonable price?
There are several overviews on avail-
able chiral carbon fragments and their
use in organic synthesis [136].

(2) Resolution of racemates by separation
of intermediate diastereoisomers [137].

(3) Enantioselective synthesis [138]; this
includes preparations using chiral aux-
iliaries, chiral synthetic catalysts [139]
and enzymatic transformations.

6.2 Esterification:
Chiral Alkanoic Acids
and Chiral Alkanols

In many cases the wing group carrying the
chiral centre has been linked to the meso-
genic core by esterification of either a chi-
ral alkanoic acid or an alkanol. Often, com-
mercially available chiral material is used
(Table 3). For alkanoic acids, techniques for
the resolution of synthetically prepared
racemates are well established [137] and
have been used in the preparation of chiral
substructures in liquid crystalline material
[148]. ex-Haloalkanoic acids have found fre-
quent application [153]. An easy access to
these structures is given by the one-step di-
azotation/halogenation of natural ¢-amino
acids. The reaction proceeds with retention
of configuration. Fluorination with pyridin-
ium polyhydrogen fluoride (Py/HF 30:70)
[154 a] induces rearrangements in some sub-

strates (Val, Iso-leu, Phe-Ala, Tyr, Thr)
[154b]. These anchimerically assisted rear-
rangements can be suppressed by using a
lower HF concentration (Py/HF 52:48)
[154c]. Another synthetic method uses o-
hydroxy esters as precursors. Transforma-
tion into the a-bromoester and subsequent
treatment with Amberlite IRA 900 [F~] and
Amberlyst-A 26 [F] leads by double inver-
sion to the chiral a-fluoro ester with reten-
tion of the chiral centre. Alternatively, mes-
ylation of the hydroxy ester with subsequent
reaction with fluoride ions on anion ex-
change resins leads to the chiral a-fluoro
esters with an inversion of configuration
[155]. Non-activated alkanols can be fluo-
rinated with DAST with inversion of con-
figuration. Fluorinations of this sort have al-
so been achieved with Bu,NF.

The «-haloalkanoic acids have been re-
duced to the corresponding 2-haloalkanols
and these have been esterified to yield var-
ious mesogenic cores with chiral terminal
groups [146, 156]. Another rapid access to
enantiomerically pure 2-chloro- and 2-flu-
oro-alkanols uses the stereoselective addi-
tion of Hal-equivalents (SiF,, 'Pr,NH) to
chiral epoxides [157]. While there are pos-
sibilities of preparing chiral epoxides di-
rectly from alk-1-enes [158], a wealth of
enantiomerically pure epoxides is commer-
cially available. Epoxides have also been re-
acted with C-nucleophiles to give chiral al-
cohols with concomitant C—C linkage [159].

29 — 30

PPh, £ i
EtOOC-N = N-COOE: . .

31

Scheme 9. Etherification
with inversion of configura-
tion at the reaction centre
(after Shibata et al. [160b]).



6.3 Etherification

Chiral alkanols have also been linked as
ethers. Of special interest for etherification
is the Mitsunobu reaction [160], which can
be used for inversion of configuration at the
reaction centre of the chiral alcohol compo-
nent {Scheme 9).

7 Liquid Crystal
Synthesis in Education
and a Note on the
Purification of Liquid
Crystals

The study of LCs is valuable and suitable
for educational purposes. Often the synthe-
sis of structures of great educational inter-
est exhibiting liquid-crystalline behaviour
is uncomplicated from the synthetic point of
view and can readily be handled by students.
Articles have been devoted specifically to
the use of LCs for educational purposes and
detailed procedures [161] for classical com-
pounds have been included (e.g. cholesteryl
nonanoate [161b], cholesteryl chloride
[161b],and MBBA [161a]). Moreover, nov-
el compounds can be reached by exchang-
ing the building blocks (e.g. homologation)
without alteration of the general method and
procedure for their synthesis. The synthesis
can be complimented by the study of struc-
ture-property relationships, the effects of
solvents and optical and other properties.
Purification of LC compounds should be
done with utmost care [162]. Thus, the phase
transition temperatures are much more de-
pendent on impurities than are melting
points. For many compounds a simple pur-
ification by column chromatography is not
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sufficient and subsequent recrystallizations
are recommended, until constant transition
temperatures are reached. Usually samples
can easily be checked for inhomogeneity,
and for example, the behaviour of isolated
droplets of a substance should be identical.
Also, commercial products not specifically
designated for use as LCs may have to be
recrystallized before use. For amphiphilic
LCs the purification of any synthetic pre-
cursor is recommended, followed by a sim-
ple final step towards the LC. This avoids
the need for purification of the final amphi-
philic products with which micelle forma-
tion generally prohibits normal purification
procedures.
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Symmetry and Chirality in Liquid Crystals

John W. Goodby

1 Symmetry Operations
in Liquid Crystals

Chirality has become arguably the most im-
portant topic of research in liquid crystals
today. The reduced symmetry in these orga-
nized phases leads to a variety of novel
phase structures, properties, and applica-
tions. Molecular asymmetry imparts form
chirality to liquid crystal phases, which is
manifested in the formation of helical order-
ing of the constituent molecules of the
phase. Similarly, molecular asymmetry im-
poses a reduction in the space symmetry,
which leads to some phases having unusual
nonlinear properties, such as ferroelectric-
ity and pyroelectricity.

However, there are a number of different
symmetry concepts utilized in liquid crys-
tals which often generate considerable con-
fusion. This is because chemists and physi-
cists use different symmetry arguments and
different labelling and language in describ-
ing various systems. In the following sec-
tions, the various symmetry arguments and
definitions that are more commonly used to
describe the structures of chiral liquid crys-
tals will be discussed.

2 Molecular Asymmetry

Molecular symmetry is used to describe the
spatial configuration of a single molecular
structure, inasmuch as it describes the geo-

metric, conformational, and configuration-
al properties of the material [1]. Optical ac-
tivity, on the other hand, is simply the prop-
erty of the molecules of an enantiomer to ro-
tate the polarization plane as plane-polar-
ized light interacts with them. Such mole-
cules (and the compounds they constitute)
are said to be optically active. The words
optically active and chiral are frequently
used interchangeably, even though a chiral
molecule shows optical activity only when
exposed to plane-polarized light.

Generally, in liquid crystals, it is only
phases that contain optically active materi-
als that exhibit chiral liquid crystal modifi-
cations. Thus at least one substance in the
liquid crystal system must be a stereoisomer
that contains at least one asymmetrically
substituted atom, and which is present in a
greater concentration than its opposite enan-
tiomer. It is the configurational isomers in
the system that give rise to chiral properties.
Included in configurational isomers are two
distinct classes of stereoisomers: enantiom-
ers and diastereoisomers [2]. Enantiomers
are two molecules that are related to one an-
other as object and nonsuperimposable mir-
ror image, as shown in the upper part of
Fig. 1. Diastereoisomers usually contain
more than one asymmetric atom, and pairs
of diastereoisomers do not share a superim-
posable mirror image, as shown in the low-
er part of Fig. 1 [1, 2].

In Fig. 1 the spatial configuration about
each asymmetric carbon atom, which is
marked by an asterisk, is denoted by an ab-
solute configuration label as either R (rec-
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tus, right) or S (sinister, left). This system
of nomenclature was first introduced by
Cahn and co-workers in the 1950s [3, 4].
The configuration designation of an asym-
metric carbon atom is obtained by first de-
termining the relationship of the group pri-
orities about the asymmetric atom based on
the atomic number. The group with the low-
est priority is positioned, see Fig. 2, accord-
ing to the conversion rule, to the rear of the
tetrahedral asymmetric carbon atom. The
other three groups are viewed from the op-
posite side of the asymmetric center to the
group of lowest priority. If the remaining
groups are arranged in descending order of
priority relative to a clockwise direction
about the asymmetric center, the spatial con-
figuration is designated R. For the reverse
situation, when the priority order descends
in a counterclockwise direction, the spatial
configuration is given the absolute config-
uration label S.

2.1 Group Priority

This involves an ordering of functional
groups based on their atomic number {2]
(heaviest isotope first). A partial list (high-
est priority first) has I>Br>Cl>SO,R >
SOR > SR > SH > F > OCOR >OR > OH >
NO,>NO>NHCOR >NR,>NHR>NH, >
CX; (X =halogen)>COX>CO,R>CO,H>
CONH, > COR > CHO > CR,0OH >
CH(OH)R > CH,0OH > C=CR > C=CH >
C(R)=CR, > C¢Hs>CH, >CR;>CHR, >
CH,R > CH;>D>H>electron pair.

(1
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2.2 Diastereoisomers

When more than one asymmetric center is
present in a molecular structure, then the
material can be diastereoisomeric under cer-
tain circumstances. For example, a mole-
cule that has two asymmetric centers with
(R) and (§) configurations will be the dia-
stereoisomer of the one with an (RR) con-
figuration. Similarly, the (5S) configuration
is the diastereoisomer of the (RS) molecule.
However, the (RS) compound is the enan-
tiomer of the (SR) variation, and the (RR)
compound is the enantiomer of the (S5)
form. Enantiomers are expected to have the
same physical properties as one another, but
diastereoisomers can have properties that
are different from one another.

2.3 Dissymmetry

So far we have only discussed chirality in
molecules that contain an asymmetric atom;
however, some molecules are optically ac-
tive even when they do not possess an asym-
metric atom, e.g., substituted allenes, spiro-
cyclobutanes, etc. For molecules with a dis-
symmetric structural grouping, the (R) or (S)
configuration is found by assigning prior-
ity 1 to the higher priority group in front, 2
to the lower priority group in front, 3 to the
higher priority group in the back, etc., then
examining the path 1 -2 —3 —4. For ex-
ample, the absolute spatial configurational
assignment for 1,3-dimethylallene enan-
tiomers is shown in Fig. 3.

&)

CH3 CH3 CH3
Hom, /e @ @ @ -
=C=—¢C HC H H CH; Figure 3. Determination of
H30/ \ K J \ spatial configuration for the
H ot Hoy dissymmetric material 1,3-di-
(R) ) methylallene.
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m (i)

Figure 4. Rotational symmetry operations in chiral
materials.

Dissymmetry can also occur for materi-
als that possess rotational symmetry ele-
ments. Typically dissymmetric materials
that have two- or threefold rotational axes
of symmetry can also exhibit optical activ-
ity. For example, consider the following
materials: §,5-1,3-(2-methylbutyl)cyclobu-
tane and helicene (I and II respectively in
Fig. 4). Compound I contains two asym-
metric carbon atoms, does not possess a
superimposable mirror image, and is also
optically active. However, this compound is
of a higher symmetry class than asymmet-
ric compounds because it has a simple two-
fold axis of rotation passing through the cen-
ter of, and normal to, the cyclobutane ring
system. Helicene, compound II, does not
possess any chiral carbon atoms as they are
all sp? hybridized, and therefore each con-
tains a mirror plane. However, helicene is
still optically active because it has a helical
structure that does not have a superimpos-
able mirror image. This molecule also pos-

sesses a twofold axis of rotation across the
hexagonal structure of the rings.

Thus, dissymmetric molecules common-
ly have a simple axis of symmetry, and in
asymmetric molecules this axis is absent;
however, both species are usually optically
active. In liquid crystal systems both types
of material are capable of exhibiting chiral
properties. Table 1 summarizes the relation-
ships between optical activity, molecular
structure, and rotational symmetry opera-
tions [1].

3 Space Symmetry
in Liquid Crystals

There are a variety of ways in which the
space or environmental symmetry and
asymmetry can be expressed in liquid crys-
tals, with the most commonly discussed
system being that of the chiral smectic C*
phase. Thus, for the purposes of describing
space symmetry in liquid crystals, the struc-
ture and symmetry properties of the smec-
tic C phase will be described in the follow-
ing sections [5, 6].

Consider initially the environmental
symmetry for a smectic C phase that is com-
posed of nonchiral molecules arranged in
disordered layers with their long axes tilted
in the same direction with respect to the
layer planes (note there are as many mole-
cules pointing up as there are pointing
down). The space or environmental symme-

Table 1. Relationships between optical activity, molecular structure, and rotational symmetry operations (after

Eliel [1]).

Term Alternating axis Simple axis Optical activity
Symmetric present may or may not be present inactive
Dissymmetric absent may or may not be present usually active
Asymmetric absent absent usually active




try elements for the molecules in this phase
are: a mirror plane, a twofold axis of rota-
tion, and a center of symmetry. Thus the
symmetry is classed as C,;,. However, when
this phase contains optically active materi-
al, these symmetry elements are reduced to
a single polar twofold axis parallel to the
layer planes and normal to the vertical
planes that contain the long axes of the
molecules; consequently the phase has are-
duced C, symmetry, as shown in Fig. 5.
The result of the packing of the dipolar
regions of the molecules in these phases re-
quires that a spontaneous polarization (Pg)
acts along the C, twofold axis normal to the
tilt direction, as predicted by Meyer and co-
workers {5, 7] in the theoretical and experi-
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Figure 5. Symmetry operations in the
smectic C and chiral smectic C* phases.

mental verification of this phenomenon in
liquid crystals (Fig. 6). As this smectic
phase does not have a well-organized struc-
ture, the molecules can be reoriented by ap-
plying a field of known polarity. These qual-
itites give rise to the term ferroelectric to
describe such titled phases.

The presence of a spontaneous polariza-
tion in smectic liquid crystals is assumed to
be due to a time-dependent coupling of the
lateral components of the dipoles of the
individual molecules with the chiral envi-
ronment. Consequently, only the time-aver-
aged projections of the dipole moments
along the polar C, axis are effective in pro-
ducing the macroscopic spontaneous pola-
rization.
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Figure 6. Comparison of the local structures of the
smectic C and the ferroelectric smectic C* phases.

One result that stems from the above sym-
metry arguments is that the spontaneous po-
larization must have directionality [5, 6, 8,
9]. As the polarization acts along the nor-
mal to the tilt direction of the molecules and
parallel to the layers, two directions for the
spontaneous polarization become possible,
as shown in Fig. 7. If the dipoles that pro-
duce the spontancous polarization act along
the positive y direction, when an object
molecule is tilted to the right in the plane of
the page, this results in positive polarization
[Ps(+)]; the reverse situation is denoted as
negative polarization [Pg(-)].

Here again there is some confusion
between chemists and physicists, because
they use different symbols to depict dipole
moments. For chemists, the arrow showing
the direction of a dipole points towards the
negative pole, whereas for physicists it

Figure 7. Positive and negative polarization direc-
tions in chiral smectic C* phases.

points towards the positive pole [10]. The
diagram shown in Fig. 7 depicts the dipole
moments as might be drawn by a chemist.
However, depictions by chemists or physi-
cists would nevertheless yield the same no-
menclature for the polarization direction.
For the ferroelectric smectic C* phase,
molecular chirality gives rise to a reduced
space symmetry (C,, — C,); however, the
effects of a reduced molecular symmetry
and space symmetry can also come into con-
flict causing frustrated structures to be
formed. For example, some smectic C* ma-
terials can show strong asymmetric inter-
molecular interactions, which in turn can
affect the space symmetry. If the polar
coupling along the C, axis in a smectic C*
phase is strong, then its effects can be re-
duced by having the direction of the pola-
rization alternate between layers, thereby
producing a phase with no spontaneous po-
larization. In order for this to occur, the tilt
directions of the molecules must alternate
from one layer to the next, thereby produc-
ing an antiferroelectric structure [11, 12] as
shown in Fig. 8. The symmetry of the anti-
ferroelectric phase is now higher than that
of the ferroelectric state. Intermediate fer-
rielectric phases can be formed between the
ferroelectric and antiferroelectric extremes.
In ferrielectric phases there is a pattern of



alternating tilts, e.g., two layers tilting to the
left for every three tilting to the right, etc.
Thus, as we move from the ferroelectric
state to the antiferroelectric phase via inter-

Figure 8. Comparison of the local structures of the
ferroelectric, ferrielectric, and antiferroelectric smec-
tic C* phases.
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mediate ferrielectric phases, the polariza-
tion will fall in an uneven fashion, i.e., as in
a devil’s staircase.

The symmetry arguments for achiral or
chiral smectic C* phases can also be applied
in similar ways to the other smectic and soft
crystal smectic phases. For example, all of
the tilted phases (smectics I* and F*, and
crystal phases J*, G*, H*, and K*) would
have broken symmetries leading to polar
noncentrosymmetric structures resulting in
ferroelectric properties. Even orthogonal
phases, such as the smectic A phase would
have different symmetries for the chiral
versus the achiral forms. For instance, the
smectic A phase has D_,, symmetry, where-
as the chiral smectic A* phase containing
chiral molecules has D,, symmetry [13].

In an alternative way to how it is broken
by chiral molecules, space symmetry can
also be broken by certain arrangements of
achiral molecules. Forexample, achiral bent
or banana-shaped or bowl-shaped mole-
cules can pack together in certain ways to
give noncentrosymmetric structures [14].
Bent molecules, as represented by struc-
ture III in Fig. 9, can pack together with
their bent shapes snugly fitting together one
curve inside another. Similarly bowl-shaped
compounds, e.g., structure IV, can pack so
that one bowl fits snugly inside another.
Both of these arrangements will generate a

Figure 9. Bent and bowl-shaped
molecules that are capable of exhibit-
ing mesophases with reduced symme-
tries.
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Figure 10, Parallel and antiparallel packing of col-
umns of bowl-shaped molecules.

polar axis pointing in a direction perpendic-
ular to the curve in the banana or bowl
(Fig. 10). If the bananas or bowls preferen-
tially stack so that all of the sheets or col-
umns of bananas or bowls point in the same
direction, then the phase will have a non-
centrosymmetric, and hence ferroelectric,
structure [14]. Alternatively, the sheets or
columns can have an up—down arrangement
leading to an antiparallel, and hence anti-
ferroelectric, structure (Fig. 10).

4 Mesophase Phase
Symmetry

When chiral molecules pack together to give
a condensed liquid crystal phase, under
certain conditions they can do so to give a

phase with a helical macrostructure. For cal-
amitic and discotic systems, the calamitic
chiral nematic, discotic chiral nematic, and
the smectic C*, I*, and F* phases are all
capable of possessing helical structures,
whereas the orthogonal calamitic smectic
phases A* and B* (hexatic), and the crystal
phases B*, E*, I*, G*, H*, and K* do not
apparently exhibit helicity. In addition,
some columnar phases are thought to have
a helical disposition of the molecules along
the axes of the columns [15].

Helical phases have similar symmetry
properties to those of a molecule of helicene
in that they are dissymmetric because they
possess a twofold (infinite) axis of rotation
normal to the helical axis through the mid-
point of the helical structure. As helical
phases are dissymmetric and do not have
superimposable mirror images, like heli-
cene, they are also optically active. Thus a
beam of plane polarized light traversing
such an arrangement of molecules will be
rotated by the helical ordering [16]. How-
ever, the specific rotation (o) is usually
much greater for helical phases than for the
sum of the specific rotation(s) of the indi-
vidual molecules. Thus, in this case, as the
optical activity is due to the helical macro-
structure of the phase, rather than due to the
sum of the optical activities of the individ-
ual molecules, it is termed form optical ac-
tivity.

The helical ordering can be defined as
left- or right-handed by determining the di-
rection of the rotation, to the right or the left,
on moving away from an observation point
along the helical axis, as described by Cahn
et al. [3] (see the motor car wheel in Fig. 11,
the direction of rotation with respect to the
direction of travel determines the handed-
ness of the helix). A rotation to the left is
denoted as a left-hand helix, and rotation to
the right results in a right-hand helix. Plane
polarized light traversing a spiraling struc-



Figure 11. Definitions of helical twist direction in
chiral nematic phases.

ture will have its plane of polarization rotat-
ed in the same direction as the helix, i.e., the
designation of helical handedness can be
made from viewing the light beam moving
away from the observer. However, in pola-
rimetry experiments on optically active lig-
uids or solutions, the observation point for
classification of a system as dextro- or lae-
vo-rotatory is made from the viewpoint of
looking into the oncoming beam of light [2,
17]. Thus, by definition, rotation of the in-
coming plane of plane polarized light to the
right is dextrorotatory and rotation to the left
is laevorotatory. Consequently, in a pola-
rimeter-style experiment a left-handed he-
lix will produce a dextrorotation, and a
right-hand helix will produce a laevorota-
tion (see Fig. 11 for the cholesteric phase).

When the pitch of the helix formed by the
orientational ordering of the molecules is
comparable to the wavelength range of vis-
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ible light, the helical phase will scatter or
reflect iridescent light {15]. Moreover, the
pitch of the helix is temperature-sensitive,
because it depends on the orientations and
interactions of the molecules, which are al-
so temperature-dependent. Therefore the
color of the scattered light also depends on
the ambient temperature, consequently be-
ing capable of producing a thermochromic
effect when the pitch of the helix is compar-
able to the wavelength of light. Further-
more, helical structures can be unwound by
the application of an electric field which
couples to the polarity or dielectric anisot-
ropy of the material. Thus if a helix is scat-
tering visible light it can be prevented from
doing so by applying an electric field, there-
by producing an electro-optic effect.

4.1 The Chiral Nematic
Phase

The structure of the chiral nematic or chol-
esteric phase is one where the local molec-
ular ordering is identical to that of the ne-
matic phase. In the direction normal to the
director the molecules pack to form a heli-
cal macrostructure (see Fig. 12), i.e., in the
calamitic variation, the director is rotated in
a direction perpendicular to the long axes of
the molecules. As in the nematic phase, the
molecules have no long range positional or-
der, and no layering exists. The pitch of the
helix can vary from about 0.1x107% m to al-
most infinity. The optic axis of the phase is
along the helical axis so the phase has aneg-
ative birefringence and is optically uniaxial.
Disc-like molecules can also exhibit chol-
esteric phases when they possess chiral mo-
lecular structures [18], as shown in Fig. 13.

As noted earlier, when plane-polarized
light traverses the helical structure of a chi-
ral nematic phase, its plane is rotated in the
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Figure 12. Helical structure of the chiral nematic
phase.

same direction as the helix by the helical or-
dering. Thus a cholestrogen can be defined
in terms of its absolute spatial configuration
(R) and (S) and its helical orientational or-
dering properties, i.e., dextrorotatory (d)
and laevorotatory (1).

If we make a more detailed examination
of cholesterogens that have molecular struc-
tures that contain single chiral carbon
atoms, as exemplified by the typical homol-
ogous series shown in the top part of

Figure 13. Helical structure of the chiral nematic dis-
cotic phase.

For a given spatial configuration R or S about the chiral centre

where e or o is the parity of n
in the spacer chain, and

d is a right hand helix and

lis a left hand helix

Figure 14. Relationship between helical twist direc-
tion and molecular structure in chiral nematic phases.

Fig. 14, then it is found that the number of
atoms (n) that the chiral center is removed
from the rigid central core determines the
handedness of the helical structure of the
chiral nematic phase. As the atom count by
which the chiral center is removed from the
core (n) switches from odd (o) to even (e)
(parity), so the handedness of the helix al-
ternates from left to right or vice versa. Sim-



ilarly, if the absolute spatial configuration
of the chiral center is inverted, say from (R)
to (§), so the handedness of the helix also
reverses. Thus the twist sense of the helix is
dependent on the absolute spatial configu-
ration and the position of the asymmetric
center within the structure of the material
relative to the rigid central core region.

Gray and McDonnell [19] suggested that
the spatial configuration of the chiral center
of the molecular structure is related to the
screw direction of helical structures in chol-
esteric phases in the following way:

Sol Sed
Rod Rel
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Figure 15. Alternation in position of a
methyl group located at the chiral center
as the chiral center is moved sequentially
down a terminal aliphatic chain.

where (S) or (R) is the absolute spatial con-
figuration of the chiral center, e or o is the
odd or even parity for the atom count that
the chiral center is removed from the cen-
tral rigid core, and d or | refers to the hand-
edness of the helical structure (see Fig. 14).
Figure 15 shows, with the aid of space-fill-
ing molecular structures, how the location
of the chiral center, and its related substitu-
ents, oscillates back and forth with the
parity for a simple homologous series. The
alternation in twist sense with change in
parity suggests that the helical twist sense
is related to the conformational structure
and the steric packing of the molecules. This
relationship works very well for simple



126 V  Symmetry and Chirality in Liquid Crystals

compounds that possess only a single chiral
center and which exhibit the cholesteric
phase, but for more complex molecular
structures (e.g., those containing more than
one chiral center, or having strong polar
groups attached to the chiral center, or large
bulky groups attched to the asymmetric cen-
ter) and smectic phases the relationship is
not as useful.

Inhelical phases, it is generally found that
when the chiral center is brought closer to
the core the pitch of the helix becomes short-
er, and therefore the chirality increases [20].
This is thought to be caused by the increased
steric hindrance to the rotation of the asym-
metric center about the long axis of the
molecule. Hence the degree of chirality of
the mesophase, determined by the pitch of
the helix, can be predicted to some degree
from the molecular structure of the materi-
al in question.

The twist sense of a chiral nematic phase
can be determined, relatively easily, by ob-
serving contact preparations in the micro-
scope [19]. A standard material of known
twist sense is allowed to make contact with
a chiral nematic of unknown twist direction
and then the area of contact between the two
compounds is observed in the microscope.
If the two materials have the same twist
sense, then the contact region will exhibit a
chiral nematic (cholesteric) phase, but if

Continuous
Miscibility

Nematic
Boundary

Contact Studies

Compounds

%

Contact
Boundary

Contact
Boundary

Opposite Same
Twist Sense Twist Sense

Figure 16. Contact method for determining the twist
direction in chiral nematic phases.

they have opposite twist senses then a ne-
matic phase will separate the two chiral ne-
matic regions, as shown in Fig. 16.

4.2 Helical Smectic Phases

The smectic C*, I*, and F* phases have sim-
ilar optical activity properties to the choles-
teric phase, and also possess a helical dis-
tribution of their molecules. In the chiral
smectic C* phase, the constituent molecules
are arranged in diffuse layers where the
molecules are tilted at a temperature-depen-
dent angle with respect to the layer planes.
The molecules within the layers are locally
hexagonally close-packed with respect to
the director of the phase; however, this
ordering is only very short range, extend-
ing over distances of approximately 1.5-
2.5 nm. Over large distances, therefore, the
molecules are randomly packed, and in any
one domain the molecules are tilted rough-
ly in the same direction. Thus the tilt orien-
tational ordering between successive layers
is preserved over long distances.

A helical macrostructure is generated by
a precession of the tilt about an axis normal
to the layers, as shown in Fig. 17. The tilt
direction of the molecules in a layer above
or below an object layer is rotated through
an azimuthal angle relative to the object
layer. This rotation always occurs in the
same direction for a particular material, thus
forming a helix. The helix can be either
right-handed or left-handed depending on
the chirality of the constituent molecules,
i.e., in a similar way to chiral nematic phas-
es. The pitch of the helix for most C* phas-
es is commonly greater than one microme-
ter in length, indicating that a full twist of
the helix is made up of many thousands of
layers. Thus the azimuthal angle is relative-
ly small and is usually of the order of one-
tenth to one-hundredth of a degree.



In the chiral smectic I* phase the mole-
cules are arranged in a similar fashion to the
way they are organized in the C* phase. In
the smectic I phase, however, the in-plane
ordering is much more extensive, with the
molecules being hexagonally close packed
with respect to the director of the phase. The
positional ordering of the molecules extends
over distances of 15—60 nm within the lay-
eres and is therefore short range in nature.
The phase, however, possesses long-range
bond orientational order in that the hexago-
nal packing of the molecules remains in the
same orientation over long distances in three
dimensions, even though the positional or-
der is only short range. The tilt orientation
between layers, as in the smectic C* phase,
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Figure 17. Helical macrostructure
of the chiral smectic C* phase.

is preserved. Another feature associated
with the tilt in the smectic I/T* phase is that
it is directed towards an apex of the hexag-
onal packing net — a structural parameter
that distinguishes the phase from smectic F
[21, 22].

As with the smectic C* phase, there is a
spiralling of the tilt orientational order nor-
mal to the layer planes forming a macro-
scopic helix [23]. Again the twist of the tilt
direction between successive layers can be
either to the right or to the left, depending
on the structure(s) of the constituent mole-
cules. The pitch of the helix, although tem-
perature-dependent, is usually greater for
smectic [* phases than it is in preceding
smectic C* phases in the same material. The
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azimuthal angle is consequently smaller for
the smectic I* phase in comparison to the
smectic C* phase for materials that exhibit
both phases. As the phase has spiralling tilt
orientational order, the hexagonal packing
net is also rotated about an axis normal to
the layers on passing successively from one
layer to the next. Thus the bond orientation-
al ordering presumably rotates in a direction
normal to the layers.

The structure of the chiral smectic F*
phase is similar to that of the chiral smec-
tic I* phase, except that the tilt direction is
towards the side of the local hexagonal
packing net, rather than towards the apex.

The more ordered crystalline smectic-
like phases J*, G*, H*, and K* have not been
definitely shown to exhibit a helical struc-
ture. Certainly, X-ray diffraction and opti-

cal studies have failed to detect this order-
ing over many hundreds of layers, indicat-
ing that if a helix exists in any of these phas-
es it must have an extremely long pitch
length [24]. It is more likely, however, that
this ordering is suppressed by the crystal
forces of the phase. Consequently, unlike
the chiral nematic and smectic C¥*, I*, and
F* phases, which have two levels of optical
activity (molecular and form), the crystal-
line phases J*, G*, H*, and K* probably on-
ly have a single level of molecular optical
activity.

Another consequence of the formation
of a helix in the smectic C*, I*, and F*
phases is that the spontaneous polarization
direction is tied to the tilt orientational or-
dering, which is itself spiralling in a direc-
tion normal to the layers. Hence the sponta-

Figure 18. Relationship between
molecular, environmental, and form
chirality for the chiral smectic C*
phase.



neous polarization is also rotated in a spi-
ralling manner in a direction normal to the
layers. Thus when the helix makes one full
360° turn, the polarization is averaged to
zero. Therefore in a bulk undisturbed phase
which is not influenced by external forces
the spontaneous polarization will be aver-
aged to zero. However, if the helix is un-
wound by external forces, such as surface
interactions, or by compensating the helix
in a mixture so that its pitch length is infi-
nite, the phase will again become ferro-
electric. It is for this reason that Brand et al.
have described optically active helical
smectic C* phases as helielectric rather
than ferroelectric [25].

Overall, for the smectic C* phase we can
relate the three symmetry elements to one
another in a simple diagram, as shown in
Fig. 18. At the microscopic level we have
molecular chirality; locally for molecular
clusters we must consider the space or en-
vironmental chirality, and for the bulk phase
we have to include form chirality.

5 Frustrated Phases

5.1 Double Twist and Blue
Phase Helical Structures

Consider first a uniaxial phase that is com-
posed of chiral rod-like molecules. In the
simplest situation, a helix can form in a di-
rection perpendicular to the long axis of an
object molecule. This example is analogous
to the structure of the chiral nematic phase.
In the direction parallel to the long axes of
the molecules no twist can be effected. Now
consider a similar situation, but this time the
twist in the orientational order can occur in
more than one direction in the plane perpen-
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Figure 19. Double twist cylinder found in blue
phases.

dicular to the long axis of an object mole-
cule. This structure is called a double twist
cylinder, and is shown in Fig. 19.

In the simplest form of the double twist
cylinder, two helices are formed with their
axes perpendicular to one another in the
plane at right angles to the direction of the
long axis of the molecule [26]. Expanding
this structure in two dimensions, the two
helices can intersect to form a 2-D lattice.
However, the helices cannot fill space uni-
formly and completely, and hence defects
are formed. As helices are periodic struc-
tures, the locations of the defects created by
their inability to fill space uniformly are
also periodic. Thus a 2-D lattice of defects
is created. This inability to pack molecules
uniformly can be extended to three dimen-
sions to give various cubic arrays of defects
[27]. The different lattices of defects pro-
vide the structural network required for the
formation of a range of novel liquid crystal
phases that are called blue phases. In prin-
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Figure 20. Two possible cubic defect structures for
blue phases: (a) asimple cubic structure, (b) abody-
centered cubic structure.

ciple these phases are frustrated structures
where the molecules would like to fill space
with a double twist structure but are prevent-
ed from doing so, and the result is the for-
mation of defects. Thus the formation of de-
fects stabilizes the structure of the phase.
Two possible cubic structures of defects for
the blue phase are shown in Fig. 20.

These frustrated phases were called blue
phases because when they were first ob-
served microscopically by Coates and Gray
[28] they appeared blue. Their strong blue
color is due to the selective reflection of
light. Other materials were later discovered
which exhibited blue phases where the se-
lective reflection was in the red or green re-
gion of the spectrum. Experimentally it was
found, however, that the helical pitch length

must be of a similar length to the wavelength
of visible light for a material to exhibit a
blue phase, so the lattice period for the de-
fects is of the order of 5000 A (500 nm).

5.2 Twist Grain Boundary
Phases

Blue phases are not the only frustrated struc-
tures that can be formed in liquid crystals.
Twist grain boundary phases were predict-
ed, by de Gennes [29] and later by Renn
and Lubensky [30], to be a resultant of the
competition between bend or twist deforma-
tions in smectic phases and the desire for
the mesophase to form a layered structure.
Typically, therefore, twist grain boundary
(TGB) phases are usually detected at the
phase transitions from the liquid or chiral
nematic states to the smectic state [21]. So
far stable twist grain boundary phases have
been found to mediate the chiral nematic to
smectic A*, isotropic liquid to smectic A*
[31], and chiral nematic to smectic C* tran-
sitions. This gives rise to corresponding
TGBA* and TGBC* phases which general-
ly exist over a temperature range of a few
degrees.

At a normal chiral nematic to smectic A*
transition, the helical ordering of the chiral
nematic phase collapses to give the layered
structure of the smectic A* phase. Howev-
er, for a transition mediated by a TGB phase,
there is a competition between the need for
the molecules to form a helical structure due
to their chiral packing requirements and the
need for the phase to form a layered struc-
ture. Consequently, the molecules relieve
this frustration by trying to form a helical
structure, where the axis of the helix is per-
pendicular to the long axes of the molecules
(as in the chiral nematic phase), yet at the
same time they also try to form a lamellar
structure, as shown in Fig. 21. These two



Figure 21. Helical structure of the TGBA* phase.

structures are incompatible with one an-
other and cannot co-exist and still fill space
uniformly without forming defects. The
matter is resolved by the formation of a pe-
riodic ordering of screw dislocations which
enables a quasi-helical structure to co-exist
with a layered structure. This is achieved by
having small blocks of molecules, which
have a local smectic A structure, being ro-
tated with respect to one another by the
screw dislocations [32], thereby forming a
helical structure. As the macroscopic helix
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Figure 22. Commensurate and incommensurate

structures in the TGBC phase.

is formed with the aid of scew dislocations,
the dislocations themselves must be period-
ic. It is predicted that rows of screw dislo-
cations in the lattice will form grain boun-
daries in the phase, and hence this phase was
called the twist grain boundary (TGB)
phase.

In this analysis it must be emphasized that
the TGB phase is not simply a layered chol-
esteric phase, and should not be confused
with this concept. A layered cholesteric
phase simply cannot exist on a macroscop-
ic scale, and it is a requirement that defects
must be formed.

Subsequently, the tilted analog of the
TGBA* phase, the TGBC* phase, was de-
tected at the chiral nematic to smectic C*
transition. Two forms of this phase are pre-



132 V  Symmetry and Chirality in Liquid Crystals

dicted; one where the molecules are simply
inclined to the layer planes with no interlay-
er twist within a block, and another where
they are allowed to form helical structures
normal to the layer planes in addition to the
helices formed by the screw dislocations.

In both TGB phases the helical structure
can be discrete or indiscrete, i.e., the num-
ber of blocks required to form a 360° rota-
tion of the helix can be either a whole num-
ber, in which case the phase is said to be
commensurate, or else it is not formed by a
whole number, in which case the phase is
said to be incommensurate, as shown in
Fig. 22.
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Chemical Structure and Mesogenic Properties

Dietrich Demus

1 Introduction

In the early years of liquid crystal research
several compounds with liquid crystalline
properties were synthesized, sometimes by
chance, without any knowledge of the rela-
tion between the molecular structure and the
mesogenic properties [1, 2]. In the case of
cholesterol derivatives, even the chemical
structure of the basic moiety was not known
in that time. Vorlidnder and coworkers also
found their first mesogenic compounds by
chance [3]; however, they very quickly
changed to a systematic investigation of the
relation between molecular structure and
mesogeneity [4, 5]. As early as 1908, Vor-
linder was able to establish his rule regard-
ing the most elongated molecular structure
of the molecules of liquid crystals [4]. This
rule is still valid for calamitic compounds.
Table 1 shows some early examples from
Vorldnder, demonstrating the rule.

Vorlidnder also had the idea to look for
mesogenic properties in the cases of star-
like or cross-like molecules, however, his
coworker did not have any success in this
area [5, 6]. About 1977, Chandrasekhar
et al. [7] and Billard et al. [8] were, inde-
pendently, able to prove that disk-like mole-
cules can in fact form mesophases, called
columnar phases. Since then, several hun-
dred discotic compounds have been synthe-
sized [9-14].

During his systematic investigations,
Vorlidnder had already found liquid crystal-

line compounds, with a molecular structure
deviating strongly from a simple rod-like
shape [15-18]. Such compounds having an
‘unconventional’ molecular structure have
been a topic of research for the last 15 years,
which has led to a variety of different dim-
ers, trimers, branched and laterally substi-
tuted, polycatenar compounds and others
{1, 2, 19-21]. Many of these compounds
exhibit conventional nematic and smectic
phases, while others show deviations from
the classical layer thickness (double layers,
interpenetrating layers) or form cubic or co-
lumnar phases.

Table 1. Transition temperatures of the compounds
synthesized by Vorlénder {4, 5]*.

1. @—CH=NN=CH—@

Cr234N 2601

2. @—CH=N©—CH2©—N=CH©

Not liquid crystalline

3. C|-@—CH=N—X—N=CH—@—C|
x-~<O)- Cr180N 2881
x-<Oy<O)- Cra6sN 3181

4. H5C2O—©—CH=N-@—CH=(I3—CO.OC2H5
R

R Cr Sm N I
H e 81 e 157 e 160 I
CH, o 95 (o 77) o 123 o
CH, o 73 - - (¢ 62) e
CH, o 104 - - — — o

* From [2], by permission of the publishers.
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Vorldnder also investigated the influence
of the length of the molecules on their mes-
omorphic properties, and during these in-
vestigations he made the first observation of
oligomeric or polymeric liquid crystals
[17]. Stimulated by the aim of producing
superstrong fibres, polymer liquid crystals
have been synthesized systematically since
about 1967 [22], and at present many differ-
ent varieties are known.

The clear dependence of the mesomor-
phic properties on the geometrical shape of
the molecule has allowed the derivation of
simple models for describing the systems
theoretically.

Calamitic and discotic compounds can be
described theoretically using the same ba-
sic model, i.e. the cylinder, by elongation or
compression, respectively, of the central
axis of the cylinder [23]. Of course, the cy-
linder model is a oversimplification of real
mesogenic molecules. As most of the com-
pounds contain ring systems, which are
somewhat flat, it could be proposed that par-
allelepipeds provide better models. In fact,
such models have been used for molecu-
lar—statistical theories, and these have al-
lowed the description of, in addition to cal-
amitic and discotic molecules, flat elongat-
ed (board-like, sanidic) molecules [24].

In order to synthesize liquid crystals with
predicted properties, one of the basic ques-
tions for the chemist is: Which intermolec-
ular interactions are responsible for the sta-
bilization of liquid crystalline phases? The
known dependence of mesogenity on the
molecular geometry prompted the deriva-
tion of molecular—statistical theories, based
on the shape-induced anisotropy of the re-
pulsion of the molecules [25]. Despite the
remarkable success of such theories, it is
clear that real condensed phases always con-
tain strong attractive interactions, which are
completely neglected by this procedure.
Therefore, attempts have been made to
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prove the stability of liquid crystalline phas-
es by using only attractive interactions [25].
From the formal standpoint, by fitting cer-
tain constants of the theory, this treatment
also works; however, in many cases it leads
to wrong conclusions regarding the chemis-
try of the systems [26-28].

The combination of repulsive and attrac-
tive interactions of the van der Waals type
in theories is the most satisfactory treatment
of the problem {25, 29]. Because of the
dense packing of the molecules in liquid
crystalline phases, the anisotropy of the re-
pulsion is the dominant quantity for the sta-
bilization of the mesophase. The major part
of the attraction, which is also isotropic in
mesophases, couples with the shape an-
isotropy, producing the necessary density of
the stabilization of the mesophase. Howev-
er, the anisotropic part of the attraction,
which is used as the essential basis of cer-
tain molecular—statistical theories, is, in
most cases, only a minor correction of the
total attraction [30]. Restricting the consid-
eration to steric repulsive and dispersion at-
tractive forces, the van der Waals theories
predict a dependence of the clearing tem-
perature of nematics on the length-to-
breadth ratio X of the molecules, the aver-
age polarizability ¢, and the anisotropy of
the polarizability Aa. The examples in Fig-
ure 1 show that in fact only X has a clear
functional connection with the clearing tem-
peratures; in other words, X is the most im-
portant factor of the three. In compounds
containing strongly polar groups (e.g. —CN,
—NO,) the interaction of permanent and in-
duced electrical dipoles plays a remarkable
role 28, 31, 32].

Molecular—statistical theories are avail-
able for several different smectic phase
types [25]. In addition to the ingredients of
the nematic phases, the theories incorporate
parameters responsible for the formation of
layers. The clearing temperatures, however,
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Figure 1. The nematic—isotropic transition tempera-
tures, Tyy_; of some liquid crystals plotted against the
length-to-breadth ratio, X (@), the mean polarizabil-
ity, o (3, and the anisotropy of the polarizability Ac
(A). (From Demus [2}).

are determined by the same properties
which determine the Ty _; of nematics. The
existence of columnar and discotic nematic
phases can be explained by theories that are
similar to those of nematics, but the model
is extended from the rod-like elongated cyl-
inder to disk-like flat cylinders [23].

In accordance with the philosophy ex-
plained above, in order to obtain pro-
nounced mesogenic properties, the chemist
has to produce molecules with strong shape
anisotropy (rods, disks) and strong attrac-
tion (moieties with large polarizability,
strong dipoles, hydrogen bonds, electron
donor acceptor (EDA) interaction). In the
following sections this will be proved using
experimental data.

2 Rod-Like (Calamitic)
Liquid Crystalline
Compounds

2.1 General

There are several published compilations of
liquid crystalline compounds and their tran-
sition temperatures [33—36], showing the
respective state of the art. The number of
known compounds was 1412 in 1960 [33],
5059 in 1974 [34], 12876 in 1984 [35] and
according to recent estimations more than
72000 [35a]. There are many reviews of the
chemistry of liquid crystals. We deal here
mainly with the newer reviews [37-44];
with regard to the older reviews, we refer
simply to the near-complete citation of the
older literature given in [45].

Most of the rod-like liquid crystalline
compounds consist of two or more rings,
which are bonded directly to one another or
connected by linking groups (L), and may
have terminal (R) and lateral (Z) substitu-
ents. The chemical structure of many meso-
gens can be represented by the general for-
mula 1. The rings, represented in 1 by cir-

R@’ L Q’Q‘Q’Rz 1
Z Z; Zy

cles, and the linking groups L form the core
of the compound. The core is usually a rel-
atively stiff unit, compared to the terminal
substituents, which in most cases are flex-
ible moieties such as alkyl groups. The lat-
eral substituents Z are, in most cases, small
units such as halogens, methyl groups and
—CN groups.

The major anisotropy of the molecules,
which is necessary for their mesogenity, re-
sults from the cores, which are also the cause



136 VI Chemical Structure and Mesogenic Properties

of the relatively high melting temperatures.
The competition between the clearing tem-
perature and the melting temperature of a
compound controls the possibility of ob-
serving the mesogenic properties. In princi-
ple, anisotropic molecules of all shapes are
mesogenic; however, in many cases, be-
cause of too high melting temperatures the
mesogenic properties cannot be detected.
In many cases the isotropic melts can be
supercooled, which offers the possibility of
observing monotropic liquid crystalline
phases. The systematic decrease in the melt-
ing temperatures by the attachment of flex-
ible terminal groups to the cores is therefore
very important. Lateral substituents can al-
so have the same effect.

In the following sections the effects of the
different parts of the molecule on its meso-
genic properties will be discussed.

2.2 Ring Systems

The core consists of rings that are connect-
ed to one another either directly or by link-
ing groups. Any rings that allow a stretched
configuration of the molecule can be used.
In practice, mainly six- and five-membered
rings are used, and some more complex ring
systems such as cholesterol.

2.2.1 Six-Membered Rings

The classical ring, which in first decades of
liquid crystal chemistry was used almost ex-
clusively, is benzene. Table 2 presents the
transition temperatures of its para oligom-
ers. The melting temperatures increase rap-
idly in this series. The increase in melting
temperature with the increasing number of
rings is a general phenomenon, irrespective
of the nature of the rings. It can also be seen

Table 2. Transition temperatures of p-oligophenyls.

T, Tsmn Taa Ref.

@) 55 - - [46]
708 - - [46]

O—O—O 2138 - - [46]
O—-O—~0O~O 320 N 1

OO0 388 - 418 W47
OO @@ 440 475 565 (47
O-0+0OHO

545 ? ? [48]

from Table 2 that the mesogenity of the
compounds increases with the number of
linearly connected rings. p-Quinquiphenyl
has pronounced nematogenity, and sexi- and
heptiphenyl possess, in addition, smectic
phases, probably smectic A phases. These
oligomers are ideal linear molecules with
high stiffness, and are the prototypes of rod-
like molecules. Due to the large conjugated
aromatic systems, the intermolecular attrac-
tions of the molecules are very large, and
this explains the high melting temperatures.

Suitable terminal group substitution pro-
duces mesomorphic materials with biphen-
yl, terphenyl and quaterphenyl as cores. Ta-
ble 3 presents some examples. It is interest-

Table 3. Oligophenyl derivatives.

L. C5H1C5H11

Cr 12 SmE 47 SmB 521 [49]

2. e O-O-Oreorn

Cr192 Sm 213 1 (50]

3. e~ O—~<O—~O~O)-csHn

Cr 297 SmA 3521 [51]
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ing to note that not only are the melting and
clearing temperatures influenced by such
substitution, but so too is the polymorphism.

The most important six membered rings
introduced in liquid crystals are compiled in
Table 4. These include aromatic rings and
partially or completely saturated rings.

There are many liquid crystals, derived
from nitrogen containing aromatic ring
systems. Table 5 gives some examples. If a
CH group in aring is replaced by a nitrogen
atom the shape of the ring is only slightly
altered, but the electronic properties are
changed and quite large electric dipoles are
induced, which change the intermolecular
attraction. The influence on the mesogenity
ts shown in Scheme 1.

N
-0 O .
-0 -
N-N
L
7 AN N _<N=N>_
Scheme 1. The influence of nitrogen substituents on

the mesogeneity.

Table 4. Ring systems with six atoms.

Benzene ——@—
Pyridine @—

Cyclohexane
Cyclohexene

Cyclohexadiene

geieiele

Pyrazine @—
Cyclohexanone
Pyridazine ﬂ_
- Piperidine N—
i . Fam\
Pyrimidine —@)— Piperazine N M-
Tetrahydropyrane
Triazine _@F ydropy _CC}—
Q
=~ Dioxane
Tetrazine _(m% —<:O>_

Tetrahydrothiopyrane —CS

N
Dihydrooxazine —{ :>—
o

]
Dithiane _<: Y
F F s
Tetrafluorobenzene @ Oxathiane _<:0>_
S
FF

, Q
Dioxaborinane { B—
0}

Table 5. Comparison of nitrogen heterocyclic six-
membered ring systems (adapted from [52]).

CgHy T@*X‘@Cs"‘n

X Cr SmC SmA N I

192 - - e 213 - _— o

N
()~ e 9 - - e 205 - -

._Q_ e 194 — - e 226 e 227 e
N

{N>_ e 106 o 195 - - - _— e
N

)= e 143 o 174 e 182 e 191 e
N-N

~ ) ¢ 150 e 169 - - e 185 e
N-N

_<N=N>_ e 163 - - - - o 1725 e

The cyclohexane ring is one of the most
important moieties. It differs from benzene
by being more bulky in shape, having some
flexibility and being non-aromatic in char-
acter. The latter causes a strong decrease of
the intermolecular attraction, leading to ma-
terials with a much lower packing fraction
{27, 28]. Nevertheless, their clearing tem-
peratures are, in many cases, much higher,
due to higher length-to-breadth ratio. Since
their anisotropy of polarizability is signifi-
cantly iower than that of their aromatic an-
alogues, it is clear that this property does not
control the clearing temperature of liquid
crystals [27, 28]. Cyclohexane derivatives
belong to the most important class of sub-
stances for the application of liquid crystals
in displays.

Table 6 gives some examples of two-ring
cyclohexane derivatives, and shows the in-
crease in the clearing temperature that oc-
curs by exchanging a benzene ring by a cy-
clohexane ring. The second compound in
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Table 6. Comparison of two-ring cyclohexane deriv-
atives.

1. C.=-H1CsH11

Cr 25.1 SmE 46.1 SmE’ 47.1 SmB 52.21 [49]

2. 05H11—<:>_©>_05H11

Cr-0.8(Sm-8N-5)I [53]
3. C5H1FO_QC5H11

Cr40Sm 1104 1 [54]
4. cdi~<O)r-coo—O)cs

Cri87(N2.7N1 [55]
5. C5H11_<:>‘ COO“@‘CaH7

Crd44 (N 43)1 [56]
6. C5H11‘<:>‘COO_<:>"C3H7

Cr24 SmB 37.5N 5251 (571

Table 6 does not fit the pattern of increas-
ing clearing temperature, the reason for this
being the high amount of c¢is isomer present.

Table 7 lists some three-ring compounds.
In the first three examples the effect of cy-
clohexane substitution is not so clear; how-
ever, the last two compounds provide im-
pressive proof of the strong mesogenity of

Table 7. Comparison of three-ring cyclohexane de-
rivatives.

1. OO —~Or-esn

Cr192Sm2131 [50]

2. CsH11“<:>_©_<:>’CsH11

Cr50Sm 1961 [58]

Cr 13 Sm 164 N 166 [59]

4. eHeO~O~Orems

Cr181Sm2051 [50]

5. et O~ O~(O-oa

Cr74 SmB 2451

[52, 60]

cyclohexane derivatives. The first two ex-
amples in Table 8 follow the rule. In the
third compound the central ring has two po-
lar-group substituents, which produce low-
er clearing temperatures. The last three ex-
amples in Table 8 seem to show that the flex-
ibility of the central ring has some negative
influence on the mesogenity.

The cyclohexane derivatives, as well as
other saturated ring systems, can exist in
several conformations [67]. In order to ob-
tain the most elongated molecular structure,
the ring should exist in the chair form, and
both the bonds linking the ring should be
equatorial (ee). Substituents in the axial po-
sition (aa) produce a strongly bent molecu-
lar shape. It is well known that the chair form
of the trans-1,4-disubstituted cyclohexane
exhibits a thermodynamic equilibrium be-
tween the ga and ee conformers, which has
been discussed in some detail by Deutscher
et al. [43]. The differences in the Gibbs free
energy between the two conformers ranges
from about 2 to 20 kJ mol™'. Depending on
the nature of the substituents, the Boltzmann
distribution between aa and ee conformers

Table 8. Comparison of three-ring cyclohexane

esters.
1. Csi—~O)-coo~O)-00c—O)-CsHy
Cri125N 1881 (61]
2. CsHir< >—C00—<: :)—000—( —CsHyq
Crl123N 2161 [62]
3. Gt )-c00<_)-000—(_)-CH,
Cr 101.7 Sm 176.1 [63]
4. 05H1,—<C:)>‘ooc:—<C)—coo—<C:)>-csH11
Cri152N 1781 (64]
5. Cot~O)—000<_-coo—~O)-csHy,
Cr101.5Sm 135N 1611 [65]

6. C5H11—<:>~OOC—<:>-COO—<:>—CSH”

Cr125Sm 159N 1671 [66]




2 Rod-Like (Calamitic) Liquid Crystalline Compounds 139

can be very different, and it is temperature
dependent. With substituents of low polarity,
the ee conformer is more stable, while with
polar substituents the aa form seems to be
preferred and produces lower mesogenity
[68].

Some non-aromatic ring systems are
compared in Table 9. In the first and the
third examples, the cyclohexene probably
exists in the half-chair conformation [77],
which does not provide good linearity of the
molecules. The relatively high clearing
temperatures of example 3 may be due to a
conjugation effect with the —CN group.
Comparing the cyclohexane and bicyclo-
octane derivatives, the latter have much
stronger nematogenity. This has been dis-
cussed in terms of the different flexibility;
however, bicyclooctane in connection with
benzene gives an exactly linear core. The
last four examples in Table 9 possess re-
markable electric dipoles, which can influ-

Table 9. Comparison of two ring non-aromatic com-
pounds.

NC<O)-x-Crtis

X Cr N I Ref.
e A T
~ >~ e« 30 e 59 e  [70]
O~ e 415 e 61 e (71

o 61 e 05 o [72]
Q
_<O
. 54 (¢ 53) e [73]
S
—<S
. 98 ? . [74]
—<z}
. 78 (* 30) e [75]
O
—8
0 . 53 ? . [76]

ence Tyy_;. Here the high melting point of the
dithiane compound prevents the realization
of the nematic phase but, as it is known from
many other examples, dithiane derivatives
have higher clearing temperatures than do
the analogous dioxane derivatives.

2.2.2 Ring Systems with
More than Six Atoms

Table 10 presents a selection of the large
number of ring systems with more than six
atoms that have been used for the synthesis
of liquid crystals. Despite the fact that many
of these rings produce liquid crystals with
high clearing temperatures, these rings give
rise to relatively large viscosities. For this
reason, the application of such rings in dis-
plays has not been successful. In Table 11
some compounds containing bicyclic rings
are compared with the analogous benzene
and cyclohexane derivatives. Compared to
the second cyclohexyl derivative, the more
linear and less flexible third bicyclooctane
compound has a higher 7.. The T, of the
fourth and fifth compounds is even higher,
due to the presence of quite strong dipoles.
Compared to the benzene compound, the
compounds 2-5 in Table 11 are more bulky
and do not have a conjugated core. This ex-
plains the differences in the 7 values.
Table 12 gives some examples of com-
pounds containing rings of more than six
carbon atoms. All these compounds have a
larger breadth than oligophenyl compounds,
which reduces their mesogenity in compar-
ison to the latter. The first three compounds
are derived from partially or completely
hydrogenated naphthalene. The high 7y
of the completely hydrogenated compound
is remarkable. Replacing CH, groups by
heteroatoms does not remove the liquid
crystalline properties; however, comparing
compound numbers 3 and 4 Ty is strongly
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Table 10. Ring systems containing more than six
atoms.

Biphenyl Phenanthrene %

Naphthalene % Dihydrophenanthrene
Dioxanaphthalene Q z S

Perhydrophenanthrene

Tetralene AQ}' \/‘—‘\< Q

Quinoline % Dioxaperhydrophenanthrene
N
O
— d >—
(o]
Chromane

Quinoxaline _(\N— Fluorene
" pouol
Decalne %— Fiuorenone

OTO

<

Bicyclooctane —@— 1,5-Dioxaspiro(5.5)undecane
X0
o] Q
Bicyclotrioxane —@ﬁ—
0] 1.5-Dithiaspiro(5.5)undecane

S
Cubane & —CSO_
Cycloheptane
Indane —CO: O

o]
Phenylbenzoxazole —(N]Q— Cycloheptatrienone

Phenylbenzothiazoie —(zﬁ OQ/

Diazaazulene

Perhydrochrysene % N
~<0-
N
Perhydrotetracene m
Tropone
O
Cholesteryl

O

decreased. The last three compounds are
derived from phenanthrene; the last com-
pound, a perhydrogenated compound,
shows inferior mesogenic properties. In
these cases the degree of planarity of the
ring, and the size of the conjugated part of
the molecule should control the Ty .

Table 11. Bicyclic rings.

1.

CsH1C7H15

Cr ? SmE 36 SmB 63 1 [78]

C7H15_©>“<:>"05H11

Cr16(Sm31)1 [53]
. Cs”ﬁ‘@‘@’cﬂ"m

Cr52(SmB 44)1 [79]

[0}
C5H11—©>_<60 CHss
Cr46 SmB 74 1 [80]

(0]
. C5H11‘©—@)6>*C7H15

Cr40 SmB 87 I [81]

Table 12. Large non-polar rings, with no linking
groups.

1.

CeH
o 1%@%

Cr 30.9 (SmA 28.5) Sm 56.7 N 60.5 I [82]
Cr399N59.71 {83]
CgH

MO~ Yo,
Cr70 SmA 90.5N 140.51 [83]

O

CsHar— >_<O:<\:>—05H11
Cr65 SmA 795N 95.81 [84]

. CgHy
CsHy4

Cr 146.5 (SmE 145.5) SmA 163.5N171.51 [85]

chm—wcoc,Hg

Cr101.5SmA 111.51 [86]

. c9t41¢—<;t;c_>-cocmg

Cr71 SmA 1181 {871

) CQH1Q—Q:QCOC4HQ

Cr37SmA 38N 401 [87]
C7H15‘<Q:§:>'COCSH13
Cr84 NB89I [88]
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Polar groups, especially the CN group,
play an important role in the application of
liquid crystals. Table 13 shows same exam-
ples of polar compounds derived from naph-
thalene. Due to the CN group, the molecules
exhibit partial dimerization and, according
to general experience, the density of the ma-
terials is higher than that of the analogous
non-polar compounds. This explains the
higher Ty (e.g. compare the first com-
pound in Table 12 and the third compound
in Table 13).

In the last 10 years a very large number of
different ring systems have been introduced
into liquid crystal chemistry [35a, 36].
Many of them are not very effective in terms
of their mesogenity, and may be considered
merely as curiosities. Table 14 presents
some examples. Spiro ring systems such as
compound numbers 1 and 9 in Table 14 are
not planar; rather, the rings are perpendicu-
lar one to another. This causes an unfavour-
able bent molecular shape. In seven-mem-
bered rings (compound number 6) the direc-
tions of the substituent bonds are not par-
allel, which also leads to a bent molecular
shape. Compound number 7 is derived from

Table 13. Large polarrings, without no linking groups.

1. NC
CeHia

Cr59N 1171 [89]
2. NC
Oy
Cr49.5N79.71 [89]
3. NC
OO
Cr755N 10241 [89]
N
4 NC_O—(NQ >—CeHis
Cr 90 mesophase 108 I [90]
o
5. nc }—(obCGHn
Cr87 (N80 1 [84]

Table 14. Less common rings.

S

Cr?Sm461 [91]
O
2. 0614130—<(:)>—<N:l©CH3
Cr94.8 (N49)1 [92]
S
3, csH1so©_<N:©ocua
Cr105.5N119.21 [92]
4. CHeO S__ 8
O 5o
Cr 171 SmG 186 N 2101 [93]
s
5. 05H110-©>—{; 1 Or-oceny
Cr 145 SmE 180 SmC 228 N I [94]
6. QO D-oa
Cr67NI1 [95]
)
7. C7H1r@0000N=N@C7H15
Cr (SmiI 80 SmC 86) N 142 1 [96]
8. OO~ Drocin
Cr211 (SmA 207) N 2401 [97]
0,0
6. e O-CAO-Ore
Cr 188 SmB 2351 [98]

10.

Orc

Cr 150.5 N* 182.61 {99]

11

Cr113N*1261 {100}

the seven-membered tropone ring. As is al-
ready known from investigations into iso-
tropic solutions, 2-acyloxytropone deriva-
tives show an intramolecular migration of
the acyl substituents between the two oxy-
gen atoms at C1 and C2, involving a sigma-
tropic rearrangement [101]. The existence
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of mesophases of compound number 7 and
related tropone derivatives is discussed in
terms of the mean rod-like shape of the
molecules due to the temperature-depen-
dent sigmatropic rearrangement [96, 102].
Therefore, such materials are also called
‘sigmatropic liquid crystals’. The choleste-
rol compound (number 10) is among the
first known liquid crystals, reported by
Reinitzer in his famous work [99]. Although
cholesterol does not have very good meso-
genic potential, because it is a cheap natu-
ral product it has been used relatively often
in the synthesis of chiral materials. Related
steroids such as cholestane (number 11)
have also been used. A more detailed dis-
cussion of mesogenic sterol derivatives
can be found in Gray [38], and a short sur-
vey of the different ring systems is given in
Deutscher et al. [43].

2.2.3 Rings with Three
to Five Atoms

Several rings containing three to five atoms
have been used in the design of liquid crys-
tals. Table 15 shows some selected exam-

Table 15. Ring systems containing three to five atoms.
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ples. In terms of their influence on the mes-
ogenic properties, the small three and four
membered rings are more comparable to
bulky terminal substituents than to five- or
six-membered rings [156]. We will discuss
three-membered rings in Sec. 6.2.4, which
deals with terminal substituents.

Table 16 shows some analogous com-
pounds. In comparison to the benzene de-
rivative (compound 1), all the other com-
pounds have inferior mesogenic properties.
It is well known that cyclobutane and cyclo-
pentane are rather flexible, and the direc-
tions of the linking bonds are not parallel.
On the other hand, the cis and trans isomers,
as they are formed during synthesis, have
quite different properties (e.g. compound
numbers 2 and 3). The spiro rings (com-
pound numbers 5 and 6) are linear, but rath-
er flexible. The examples given in Table 17
further prove the superior mesogeneity of
bicyclooctane derivatives. However, the cu-
bane and bicyclopentane rings have a rela-
tively poor mesogenic potential.

Table 16. Compounds containing small rings.

CSH7—X-—COOCN

Cr N I Ref.

Cyclopropane VAN Furane _ﬂ:)]]_
Oxirane _8__
Pyrrole _IEle_
H
Thiirane (S)
Thiophene
s
Cyclobutane —D_
Thiazole N
_[L;)L

Cyclopentane

: Thiadiazole ~N—N
_H\S
Cyclopentanone ;
(o]

Selenophene _[;u_

Tetrahydrofurane —U
o Tellurophene _m_

TE

Dioxolane-2-one 0.0
z

114 e 259 o [104]

o 475

5ol

141.6 e [105]
trans-Cyclobutane

3 N\O— e 555 & 63 e [105]
cis-Cyclobutane

4. (T o 522 e 665 o [106]
cis/trans-Cyclopentane

5. <O~ e 82 e 1547 o [105]

Spiro[3.3]heptane

e 74
Dispiro[3.1.3]decane

%

161.1 e [105]




2 Rod-Like (Calamitic) Liquid Crystalline Compounds 143

Table 17. Compounds of bicyclic rings (adapted
from [107]).

cH,0<O)-000-x-coo—~)-ocH,

X Cr N I

L. <O~ .

211.0 o 281 e

2. o o 1520 o 2690 o
Bicyclo[2.2.2]octane

3, ﬁ o 1751 o 1797 e
Cubane

4. _@_ e 1430 e 1455 o

Bicyclo[1.1.1]pentane

In Table 18 end-standing five-membered
rings are compared with the mesogeneity of
benzene. Apart from the quite polar com-
pound 6, which probably shows association
effects, all the rings show inferior mesoge-
nity to that of benzene. This is probably
mainly due to differences in the bond direc-
tions, as Zaschke [52] and Iglesias et al.
[1082a] investigated in detail (see Figure 2),
and to differences in polarity. The differenc-
es in the bond angles have a greater effect
in compounds with five-membered rings in
the central core. Some examples are given

Table 18. Comparison of five-membered rings [108].

X-COOC7H15

X To T
L O 127.4 134.3
2. {3 132 124
3. () 121.1 112.9
4. LY 127.5 130.3
5. (- 108.2 106.6
6. Q_ 153.5 152.8
7. () 100.5 -

CH,

in Table 19. In particular, the 1,3,4-thiadia-
zole ring bond in positions 2 and 5 (com-
pound numbers 2 and 4) has good mesogen-
ic potential, and seems to be useful in order
to obtain compounds with smectic C or C*
phases. The isomeric ring (compound num-
ber 5) is much less useful. Figure 2 shows
that the thiazole rings provide more linear
bond directions than do the other listed
rings. This property is reflected in the rela-
tively high clearing temperature of com-
pound number 3.

Figure 2. Comparison
of the bond angles in
five-membered hetero-
cyclic rings. (By cour-
tesy of Zaschke [52]).



144 VI Chemical Structure and Mesogenic Properties

Table 19. Compounds containing five-membered het-
erocyclic rings.

1. emeO~O—Orcrms

Cr181Sm2051 [50]

-N |
2. c,mJQ—@—ES%—cmﬁ

Cr165SmC 1951

3. C7H15—1;§—©_)2}C7H15

Cr125(Sm 122) 1

4, C7H15_©“2g§_©‘07”15

Cr 80 SmC 149 N 1591

N-§
5. C7H15—©——”\N)—©—C7H15

Cr491

[109]

[110]

[111]

[109]

2.3 Linking Groups

Small chemical groups between the rings of
a liquid crystal molecule can increase the
length of the molecule, while preserving the
linear shape. In other cases, however, link-
ing groups produce a bent molecular shape
and thus diminish the mesogenic potential.
This has been clearly demonstrated by
Vorlédnder (4, 5], and one example is given
in Table 20. An even number of carbon
atoms in the central linking group allows a
linear molecular shape, while an uneven
number of atoms induces strong bending,

Table 20. Influence of the length of the central link-
ing group (data from Kriicke and Zaschke [112]).

CH30—©—CH=N——©—(CH2)rr©—N=CH—©—OCH3

n Cr N I
Q ) 266 ) 390 .
1 . 161 - - .
2 ) 171 . 312 .
3 . 134 - - .
4 ° 156 ° 270 )

in which case there are no longer nematic
phases. Compounds of this type are called
‘twins’.

Table 21 shows some of the common
linking groups. The discussion of the effect
of linking groups on liquid crystalline prop-
erties in general cannot be restricted to the
geometry of the molecules, because there
are the additional effects of conjugative
interaction with aromatic groups, effects
due to the polarity of the linking groups and
the influence on the cis/trans isomer stabil-
ity in compounds containing saturated rings.
Table 22 shows some compounds that con-
tain unsaturated linking groups. Without

Table 21. Linking groups.

-CH,-CH;- -COs-

-CH3-CH,-CH,-CH;- -00C-(CH_,),-COO-

-CH=CH- -N=N-
-C=C- —N=N—
o}

-C=C-C=C-

-CH=N-
-CH,0-

-CH=N-0OC-
-CO0-

-CH=N-N=HC-

Table 22. Compounds containing unsaturated link-
ing groups (data from Goto et al. [113]).

CaH7—©—X—©—CsH1 1
X

Tm TN-I
L ™ N 64.1 146.0
2. —em——— 62.0 115.3
3. TN 62.5 112.3
4, TN 107.8 80-90%)
5. — -18 47.8%)
6. —==— 39.0 35.8
(e N 58.3 -

%) Estimated from the behaviour of homologues.

®) Smectic B—isotropic transition.

) Isotropic melt supercooled to 15°C; not meso-
morphic.
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doubt the ranking of the linking groups with
respect to their nematogenic potential is due
to conjugation with the aromatic rings. As
would be expected, the linking groups con-
taining double bonds are more effective than
are those containing triple bonds. The high
Ty _1of compound 1in Table 22 is typical for
athree-ring compound. The lack of a nemat-
ic phase for compound 7 indicates a bent
molecular shape.

Some compounds containing a methylen-
oxy group are compared in Table 23. If the
oxygen atom has the chance to come into
conjugative interaction with the benzene
ring (compound 1), the hindrance of the ro-
tation about the bonds to the oxygen atom
is increased and thus the nematogenity is
much higher than in the reverse case (com-
pound 2). Comparison of compounds 3 and
4 shows that, probably because of the high-
er flexibility (lower rotational hindrance) of
the methylenoxy group, these compounds
exhibit poorer mesomorphic potential than
do the compounds containing an ethylene
group.

Table 24 is compiled from the literature,
and includes a large number of different
linking groups. Again the influence of con-
jugative effects can be seen; in addition, the
effect of polarity of linking groups is illus-
trated, e.g. by comparison of the azomethine
group with the nitrone groups, or the azo
group with the azoxy group.

Table 23. Comparison of linking groups (data from
Carr and Gray [114]).

X R, Cr N I
1. -CH,0-  -CH; e 69 (s 335) e
2. -OCH,- -CH; e 63 (s-210% e
3. -CH,~CH,~ -C;H, o 60 o 62 e
4, -CH,0-  -C,H, e 56 (s 30)

%) Extrapolated from data for mixtures.

Table 24. Transition temperatures of compounds
containing different linking groups (from Praefcke
et al. [115]).

CH30*©— M —(Q CiHg

M K N I
—CH=CH- e 116 e 121 .
-CH=CCl- ° 40 . 38 'y
-C=C- ° 49 ° 37 [
_ICI:O_ o 40 e 245 o

(0]
-CH=N- . 22 . 47 .
~N=CH- o 108 o 70 .

d

(0]
—CH=N- o 113 e 53 .

{
0O
—N=N- . 32 . 47 ®
-N=N- . 41 . 69 .
{
(@]

~N=N- . 43 . 71 ]

{

0

The effects of linking groups can be quite
different in aromatic and non-aromatic com-
pounds, because in the latter there are no
conjugative effects. It can be seen from Ta-
ble 25 that the ethylene (compound 3) and
ethinylene (compound 4) groups, which in

Table 25. Linking groups in non-aromatic compounds.

1. 05H114<:>—<:>~05H11

Cr40Sm 11041 [54]
2. C5H11_<—_—>’CH2_CH2_<:>'05H11

Cr46 Sm 109 1 [101]
3 C5H11—-<:>7HC=CH~<:>*CSH,1

Cr53Sm951 [101]
4. C5H11‘<:>‘C"C_C>_C5H11

Cr52(N50) 1 [101]




146 VI

aromatic compounds possess a high meso-
genic potential, decrease the clearing tem-
peratures in comparison to a single bond
(compound 1) or an ethylene (compound 2)
group.

The clearing temperatures of some ho-
mologous series are displayed in Figure 3.
The influence of the linking groups is clear-
ly visible in the different levels of the clear-
ing temperatures; however, there is also a
decisive influence of the terminal substitu-
ents, which will be discussed later.

It is worth noting that Deutscher et al.
[43] synthesized compounds with bent
moieties, in which the bending was compen-
sated for by ‘crooked’ spacers. Several lig-
uid crystalline compounds have been ob-
tained in this way by using a CH, group as
a ‘crooked’ linking group between two cy-
clohexane rings.

2.4 Terminal Substituents

Some of the more common terminal substit-
vents are listed in Table 26. The most com-
mon ones are the alkyl and alkyloxy groups.
The behaviour within the homologous se-
ries illustrated in Figure 3 shows that, in
general, there is an alternation of Ty_;. This
can be explained by the alternation of the
length-to-breadth ratio. Figure 4 shows a
typical six-membered ring, with an attached
alkyl group. It is easily seen that the attach-
ment of an odd-numbered carbon atom sub-
stituent increases the length-to-breadth ra-
tio more than does the attachment of an
even-numbered carbon atom substituent,
i.e. the value of the length-to-breadth ratio
will show an alternation. In the same sense,
T alternates.

It is well known that alkyl and related
groups are flexible, due to the relatively low
energy barrier of about 3.4 kJ mol™' neces-

Chemical Structure and Mesogenic Properties

. .;:‘7\
/N

140

120} -~

100

Temperature (°C)

80

60

I CH3O—©'CH=CH-@OCnH2n+1
1 anZn.)o—©—N=T—©}oan2n,,
0
m CnH2n,10‘©~N= N—@OCnHznn
J's CnHZn,lo@ﬁ—O—@OCnHZn¢1
£ co- g0~
i %H2m+1@%_0“@cmH2m+l
0

Figure 3. Nematic clearing temperatures in some ho-
mologous series. (From Demus [116]).

sary for the change from the trans to the
gauche conformation. Alky! chains in the
liquid crystalline state never possess the
ideal all-frans conformation, there being
a mixture of all possible conformations in
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Table 26. Terminal substituents.

Alkyl _CnH2n+[

Deuterated alkyl -C,Dy, i1

Alkeny] —(CH,),—~CH=CH-C H,, .,
Alkynyl -(CH,),—C=C-C,H,,,,
Alkyloxy -0C,H,, .,
Alkylmercapto -SC,H,, .,

Alkylamino -NH-C,H,, .,

ACyl _COACnH2n+I

Acyloxy -0CO-C,H,, .,
Alkylester -COO0-C,H,, .,
Alkylcarbonates -0COO0-C H,, .,
Halogeno -F, -Cl, -Br, -1

Cyano -CN

Isothiocyanato -NCS

Nitro -NO,

Cyanoalkyl —(CH,),-CN
Cyanoethenyl —CH=CH-CN
Dicyanoethenyl —CH=CH(CN),

Fluorinated methyl ~ —CH,F, —-CHF,, —-CF;
Fluorinated methoxy —OCH,F, ~-OCHF,, -OCF;
Perfluoroalkyl -C,Fs,0

Figure 4. Fragment of a molecule containing a ring
substituted at the 4-position. (From Demus [116]).

a temperature-dependent equilibrium. At
higher temperatures the amount of gauche
conformers will be higher than at lower tem-
peratures. Of course, the number of possible
conformers increases greatly with chain
length. In homologous series with high
clearing temperatures the Ty_; decreases,
because of the reduced anisotropy of the
alkyl chains, and the alternation seen at me-
dium chain lengths disappears. However, in
series with low Ty_y, because of the relative-
ly strong anisotropy of the chains, the Ty
increases with distinct alternation. The
‘magic’ temperature between the decrease
and increase in Ty is about 70°C, as can
be derived from many homologous series.
This principal behaviour seen in alkyl

chains can also be found in other flexible
chains.

There is another general rule in homolo-
gous series. Lower members often exhibit
relatively high melting temperatures, 7,,,,
the medium-sized members (about 4-8 car-
bon atoms) have the lowest 7,,,, and in high-
er members 7, again increases. This can be
seenin the data for a typical series displayed
in Figure 5. Despite this trend in the melt-
ing temperatures, they do not show a strict-
ly regular behaviour like that of T ;. Be-
cause of the high T,,, in lower members the
liquid crystalline phases are often mono-
tropic, and only the higher members show
enantiotropic behaviour (Figure 5).

In many homologous series the lower
members are nematic, the medium members
nematic and smectic, and the higher mem-
bers are smectic only, eventually occurring
in several modifications (Figure 6). Of
course, there are also series where smectic
phases occur in even the lowest member,
and in a few series even in the highest mem-
bers only nematic phases exist. Quite excep-
tionally, in a very few series the lower mem-
bers are smectic and only at somewhat high-

70 ———
60
TNI
Q
L 50
T
m
40
30— —

1 2 3 4 5 6 7 8 9 10 11.12

Figure 5. Transition temperatures in the homologous
series of the 4-n-alkyloxyphenyl-4-n-hexylbenzoates.
(Data from Schubert and Weisstlog [117]).

cw,@—coe@ocnr{zn.‘
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2705
| .. Isotropic

i e .
220 nematic o

170

T/C

120

70

Figure 6. Transition temperatures in the homologous
series of terephthalylidene-bis-N-(4-n-alkylanilines).
(Data from Wiegeleben et al. [149]).

Cota—O)-N=cH—~O)—CHN<O)-Crtane

er chain lengths do nematic phases appear
{118). The above description shows that the
prediction of smectic or nematic behaviour
in mesogens is very difficult. The available
theories [25, 119] start from the assumption
that there must be some attractive forces for
the formation of smectic layers to occur. The
attraction should be maximal between the
polarizable rings, compared to the attraction
to the alkyl chains. In addition to the attrac-
tion, there needs to be a tendency to micro-
phase separation in ring-containing and
chain-containing microphases, the tenden-
cy being more pronounced at higher chain
lengths, thus stabilizing the smectic layers.
On the other hand, model calculations by
Frenkel [120] showed that smectic phases
can occur without any attraction, but mere-
ly by increasing the density of the system.

It is a well established rule that in
completely non-aromatic compounds (e.g.
dialkylbicyclohexanes) smectic B and E
phases are the preferred phases [34—-36]. A
more detailed discussion of molecular struc-
ture and smectic properties is given in Gray
[39b].

Chemical Structure and Mesogenic Properties

Partially or completely deuterated alkyl
chains are prepared mainly for experiments
such as neutron scattering or nuclear mag-
netic resonance (NMR). The transition tem-
peratures are usually the same as or very
similar to those of the analogous alkyl com-
pounds [121]; however, exceptionally, there
can be differences of about 10 K [96].

In work initiated by the research group of
the Hoffmann La Roche company, many ho-
mologous series containing alkenyl groups
have been developed (see [122-124, 124 a]
and references therein). There are remark-
able alternating effects in several properties,
depending on the position of the double
bond. Table 27 presents the transition tem-
peratures of some pyridine derivatives. The
clearing temperatures show a distinct alter-
nation. According to an explanation pro-
posed by Schadt et al. [123], the direction
of the double bonds in an odd-numbered po-
sition is more parallel to the director than
that of double bonds in an even-numbered
position, which is in contradiction to the
usual presentation of the shape of alkenyl
groups.

Compounds containing strongly polar
groups (e.g. —CN, -NO,) deserve special dis-
cussion. From investigations using X-rays
and other method, it is well known that such
compounds form double molecules that ex-
ist in equilibrium with single molecules [32,
125, 126]. Comparing the clearing temper-
atures of highly polar and low polar com-
pounds, the former show much higher Ty ;
(Table 28). Using simple arguments, this ef-
fect has been explained by the increase in
the molecule length by dimerization. In fact,
however, the length-to-breadth ratio con-
trols Ty_;. Due to dimerization, the breadth
increases by a factor of 2, and the length on-
ly by a factor of about 1.1-1.4, so that the
effective length-to-breadth ratio should be
reduced. It has been shown in many inves-
tigations that highly polar compounds have
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Table 27. Transition temperatures of 5-n-heptyl- and 5-n-octyl-2-(4-n-octenyloxy-
phenyl)pyridines (reproduced, with permission, from Kelly et al. [122]).

/ N
Cn H2n+1"<-:7'"®" OR

n R C-Sm SmG-Sm; Sm;-SmB or SmC SmC or SmA-I

O (°C) () O
1.7 SN\ 47 - 58 81
2.7 N 53 68 76 84
3.7 AL 32 - 51 58
4.7 X sl - 82 84
5.7 N/ N 38 49 60 66
6. 7 NN 48 51 58 80
7.7 S N”— 30 (29) 48 73
8. 8 \_/"N__— 38 - 62 82
9. 8 \~Z/ \__— 43 57 75 85
10. 8 N 11 - 40 61
1. 8 " X__— 6l 72 84 85
12. 8 /"N 16 - 60 67
13. 8 "N\ Z 36 - 66 80
4. 8 N/ N_~—= 23 - 53 75

Table 28. Clearing temperatures of polar and non-po-
lar liquid crystals (data from Demus and Hauser [28]).

R Tui
cti~O)-crn~<O)R :gg* 275 57
_CH, 52
co{O)coo~Or  -NO, 58
-CN 81.0

a much higher density (packing fraction)
that do low polar compounds [27, 28]. This
increase in density accounts for the increase
in clearing temperature. This is an effect
comparable to the increase in the transition
temperature that occurs when the pressure
is increased, because of density increase.
Table 29 contains some data on CN sub-
stituted biphenyl analogues. The highly po-
lar compounds show association effects.
The dimerization occurs by interaction of
the CN group with a benzene ring (com-
pounds 1 and 2), or interaction of two CN
groups (compound 3). The sketches of the

possible dimers elucidate the different effec-
tive length-to-breadth ratios, which explains
the trend in the clearing temperatures.

Table 29. Association in polar biphenyl analogues
(data from Ibrahim and Haase [127]).

Tna
1. cre<O—~Oron 422
2. e H—~Oron 56.8
3. e~ )~ )on 83.3

Possible associates

1. cre~<O—~Oron
N O~ Or-crt

2. cHe< H)—~Oron
Ne~O)—~ -Css
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The halogens and the isothiocyanato
group introduce relatively large positive
dielectric anisotropy into the molecules;
however, there is no association [37].

Several of the substituents in Table 26
contain fluorine atoms. Because of the high
energy of the C—F bond these substituents
are very stable, and have become increas-
ingly important in the application of nemat-
ics in TFT (Thin Film Technology) displays
[128-131]. The perfluoroalkyl chains play
a special role, for two reasons:

1. In a typical perfluorinated alkyl the en-
ergy difference between the gauche and
trans conformations is relatively high
(9.1 kJ mol™") compared to that in an al-
kyl (3.4 kJ mol™") [132, 133]. Therefore
the perfluorinated chains are much more
stretched and thus favourable for high
clearing temperatures.

2. Perfluorinated moieties show a strong
trend to segregation from alkyls and non-
fluorinated cores [134]; perfluorinated
benzene derivatives can be virtually im-
miscible with ordinary liquid crystal ma-
terials [135].

The trend to segregation has been used in
the design of ferroelectric materials with a
small positive or even negative temperature
dependence of the layer thickness [136].
Considering this trend to segregation, Tour-
nilhacet al. [137, 138] have designed ‘poly-
philic’ liquid crystals, which consist of two
fluorinated moieties, an ordinary alkyl part
and the core. Compound 2 [137] is a typical

FreCa(CHo)110~O)—~(O)-Co0CH;CFs

2 Cr95(SmX92)SmA 1131

example. Despite the fact, that the polyphil-
ic compounds are not chiral, they exhibit
ferroelectric properties and have a small
spontaneous polarization {137].

Table 30 contains transition data on some
compounds with terminal small rings (com-
pounds 2 and 3). Compared with the simple
alkyloxy group (compound 1), the small
rings have an effect comparable to branched
alkyls, but unlike that of five- or six-mem-
bered rings. In order to obtain chiral mate-
rials, the introduction of an oxirane or thi-
irane ring in the terminal chains is useful
[143].

There are many compounds with branched
terminal substituents, particularly chiral
materials. The effect of a branch depends
substantially on its position in a chain
[144-147]. This is demonstrated in Table 31.
The reduction in the clearing temperature

Table 30. Compounds with terminal rings.

N
R{N>—©—008H,,

R

1. CyHyp0—

Cr 56 SmC 84.9 SmA 97.11 [139]

™~

[>—(CH,)0—
Cr 63.7SmC 93.21

3. @ﬂCHz)BO—

Cr62SmC 831

[140]

(141, 142)

Table 31. Compounds containing branched pentyl
groups (data from Gray and Harrison [144]).

x—©—0H=N—©-CH=CHCOR

-R X =phenyl X =NC-
Tsma- Ty
NN 204 136.5
hd 180 <20
PN 190.5 112
S 196 103
A 199 119.5
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is greater the nearer the branch is to the
centre of the molecule. This can be under-
stood by remembering the flexibility of
alkyl chains, which increases from the
centre towards the end of a molecule [148].
This causes an increase in the effective
width of the chain towards its end, so that
the effective shape of an alkyl is similar to
a cone. An terminal branch can be easily
packed into this cone without the need for
additional space. A striking case is dis-
played in Figure 7. In this homologous
series with a terminal phenyl group the
members exhibit alternating nematic prop-
erties, i.e. only the even-number carbon
atom members are nematic. Here the usual
odd/even effect is reinforced by the bulky
terminal phenyl moiety. In the terminal
chains CH, groups may be replaced by an
oxygen atom. This causes a substantial de-
crease in the clearing temperature [150,
151], the decrease being more pronounced
the nearer the oxygen atom is to the core
{151]. It seems that the major effect of the
oxygen atom is to reduce the stiffness of the
chain.

250

200

TP C

Figure 7. Transition temperatures in the homologous
series of w-phenylalkyl-4-[4-phenylbenzylideneami-
no)cinnamates. (Data from Gray [144]).

CH=N—@CH=CH-COO—(CH2)n©

2.5 Lateral Substituents

Common lateral substituents are the halo-
gens and methyl, ethyl, cyano and other
small groups. There are some uncommon
liquid crystals that contain large lateral sub-
stituents, even aromatic groups; these will
be discussed later.

Every lateral substitution leads to an in-
crease in the breadth of the molecule, and
thus a reduction in the length-to-breadth ra-
tio, X. In agreement with the van der Waals
molecular—statistical theories, this usually
reduces the clearing temperature. Figure 8
shows that there is a (not very strict) rela-
tion between X and Ty for laterally substi-
tuted compounds. Similar relations have
been found between the width of the lateral
substituents and the clearing temperature
[153]. There are several reports in the liter-
ature that prove that small lateral substitu-
ents depress the clearing temperature less
than do large ones [27, 28, 37-39, 153]. Ex-
ceptionally, in the case of highly polar lat-
eral substituents 7y ; may be even enhanced
(see Table 32). Of course, in these cases al-

H
150
(3|-|3 OCI
o 120 CN ¢
&
COCH
90 3
£ CH,CN
CH
60 2Ms
L/ 5 C3H,
5 6 7 8 9

Figure 8. Clearing temperatures in dependence on
the length-to-breadth ratio X in 2-substituted hydro-
quinone-bis-[4-n-hexylbenzoates]. (Data from De-
mus et al. [152]).

CEH‘3—<©>—<:oo{@}—ooc~<©>-c6r113
R
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Table 32. Polar and non-polar lateral substituents
(data from Demus and Hauser [28]).

CeH10~{O)-c00-N=gH~<D)-CoHg
R

R T
1. -H 71
2. -CN 83
cm@—coo@ooo—@cmg
R{ R,
Rl R2 TN-[
3. -CH, “H 180
4. -CN -CN 210

so the L./B breadth ratio will be decreased.
However, because of the strong attraction in
polar compounds the density is increased,
and this may overcompensate the decrease
in Tyy 1 resulting from molecular broadening.

To be useful for applications, compounds
should have as low as possible melting tem-

peratures. There are many examples in the
literature (e.g. [154]) where the T, of acom-
pound (and thus its clearing temperature)
has been decreased by means of lateral sub-
stitution (see also the examples given in Ta-
ble 33). This effect is probably due to the re-
duction in the symmetry of the molecule, be-
cause in less symmetric parent molecules it
seems that the effect of lateral substitution
is suppressed.

The position of lateral substituents is
quite important [154, 159-161], as can be
seen from the examples given in Table 34.
Because they do not reduce the conjugation
of the rings, substituents in the positions 3
and 3’ depress Ty far less than do those in
positions 2 and 2’. On the other hand, the in-
fluence of the size of the substituent can be
nicely observed. The influence of lateral
substituents on the stability of the smectic
phase by far exceeds that on the nematic
phase. This is clearly demonstrated by com-
pounds 4 in Table 1. Suppression of the

Table 33. Decrease in the melting and clearing temperatures by the addition

of lateral substituents.

ct-,H11—<(:)>—coo—§©>-ooc~<(:)>—C5H11

R
R T, T Ref.
1. -H 125 188 [155a]
2. -Cl 79 145 [155b]
3. -Br 76 134 [155b]
4. -CH, 78 146 [155b]
5. -C,Hs 63 100 [155b]

Rs
CsH1 CsHyq
R{ R,

Ref.

R, R, Ry
6. H H H Cr 192 SmA 2131
7. F H H
8. CN H H Cr40 (SmA 35 N38) 1
9. F F H Cr60N 1201
10. F H F Cr63NR8551

[156]

Cr51.1 SmB 62 SmA 109.5 N 136.51 {1571

[158]
[156]
[156]
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Table 34. Lateral substituents in different positions
(courtesy of Coates [37]).

3'22

N CH< : Y-OCrHi's
Substituent Depression of Ty (°C)
2F -53.5
2Cl1 -118.5
2 Br -138.5
21 ~160
2'Cl -111.5
2’ Br -127.5
21 —-153
3Cl -73.5
3 Br -81.5
3" Cl =27
3’ Br -39

smectic phase by lateral substituents is
systematically used in the design of liquid
crystals for applications in displays.

There are compounds in which the later-
al substituents are shielded, so that they are
less effective in broadening the molecule.
Table 35 shows some impressive examples
of this kind. There are also compounds with
axial CN groups in cyclohexane [162, 163]
or dioxane [164] rings, in which partly the
shielding effect and partly the increase in
density due to the polar group may be re-
sponsible for the unexpectedly high clear-
ing temperature.

Table 35. Shielded lateral substituents (courtesy of
Coates [37]).

m' Do o S

X Tsman Of Tgmay (°C) T O
H 147 181
Cl 186.5 192.5
Br 182.5 189.5

I 164.5 178.5
NO, 166.5 -

Table 36. Lateral substituents with intramolecular
association.

CH3O@CH=N@C4H9
R

R
-H Cr22N471 [165]
-OH Cr43N631 [166]
C1OHZ,O—@;CH=N—©—CH=CH—COO—%;{I—;—CZH5

R
~H Cr82Sm61 SmC 89 SmA 1061  [167]

—-OH Cr 124 (SmC 118) SmA 1351 [167]

Lateral substituents are may also giverise
to shielding effects due to intramolecular as-
sociation. Two examples involving the for-
mation of intramolecular hydrogen bonds
are given in Table 36. In both cases the lat-
erally —OH substituted compounds have
notably higher clearing temperatures. The
intramolecular hydrogen bonds probably
enhance the stiffness of the molecules, while
at the same time dramatically improving the
chemical stability of the highly reactive un-
substituted Schiff’s bases.

3 Liquid Crystals
with Unconventional
Molecular Shapes

As discussed in Sec. 2.1, the prototype of
the rod-like liquid crystal molecule (1) con-
sists of a rigid core substituted with termi-
nal flexible substituents, and eventually
small lateral substituents. In the last few
years in particular many mesomorphic com-
pounds that do not correspond to this for-
mula have been synthesized. Such materi-
als may be called ‘unconventional’ liquid
crystalline compounds [1, 2].
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3.1 Acyclic Compounds

There are several reports of semifluorinat-
ed alkanes, proving the existence of smec-
tic phases [168—171]. For example, perflu-
orodecyldecane (F(CF,),((CH,);,H) has
the following transition scheme [169]:

tilted Sm 46.9 tilted SmG or SmJ 63.51

The investigated semifluorinated alkanes
exhibit smectic phases, mainly of the hex-
agonal ordered type. However, a smectic A
phase in an iodine derivative has also been
reported [170].

The n-alkanes with chain lengths above
20 carbon atoms show phases similar to
smectic B; however, there is no final proof
of the phase type [172]. Mesophases have
also been observed in some unsaturated
acids and derivatives of acids and aldehydes
[34, 35].

3.2 Flexible Cyclic
Compounds and Cyclophanes

Cycloalkanes possess quite high flexibility
in their rings. Moller et al. [173, 174] found
that cycloalkanes with 12-96 methylene
groups are able to form mesomorphic
phases. The flexible rings are folded and
build lamellar structures that show hexago-
nal order.

Esters of cyclic alkane carboxylic acids
(7—11 carbon atoms in the rings) are nemat-
ic; their Tyy.; decrease with increasing ring
size [175].

Several crown ether derivatives with ring
sizes of 15 and 18 atoms are mesomorphic
[176-178]; an example is compound 3
[176].

The cyclophanes, in which the long flex-
ible chains are interrupted by typical meso-
genic rigid cores, are related to cycloal-

d o = CgHy7
G Oﬁ@m@ﬂ O
o)

3 Cr135(N133)1

kanes. Ashton etal. [179, 179a] found
smectic phases in several cyclophanes con-
taining alkyl or polyether linking groups

oo d o -c}
o\_loo\_,o-)

4 Cr 193 SmE 196 SmA 209 1

O™

(e.g.4[179]). In the solid state the molecule
is folded, with the biphenyl rings parallel
one to another. This folded conformation
would be a reasonable explanation for the
existence of classical smectic phases in the
cyclophanes. By comparison with the clear-
ing temperatures of dialkylbiphenyls, there
is a strong stabilizing effect of the smectic
layers by the flexible linking groups.

3.3 Compounds with
Large Lateral Substituents

3.3.1 Acyclic Lateral
Substituents

Until 1983 it was generally accepted that lat-
eral substituents diminish the mesogeneity
of a compound, the extent of the effect de-
pending on their size. As found by Weiss-
flog and Demus [180,181], surprisingly,
compounds with large flexible lateral sub-
stituents exhibit liquid crystalline phases.
Figure 9 shows a typical example, and illus-
trates the dramatic decrease in the clearing
temperature with increasing length of the
lateral chain and the final convergence with
long lateral chains. A similar trend can be
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Figure 9. Transition temperatures in the homologous
series of the 1,4-bis-(4-n-octyloxybenzoyloxy)-2-n-
alkylbenzenes. (By courtesy of Weissflog and Demus
[180]).

found in many homologous series. The in-
vestigation of several physical properties of
such compounds delivered evidence favour-
ing the conformation where that part of the
flexible lateral chain exceeding five carbon
atoms is more or less parallel to the basic
molecule [182]. Te compound with n=9
shown in Figure 9 has been investigated in
the solid state by X-ray diffraction [183].
Surprisingly, the lateral alkyl chain is in the
all-trans conformation, and all three alkyl
chains are nearly parallel. This conforma-
tion deviates strongly from the rod-like
shape, and it seems improbable that it is
maintained in the nematic state.

Figure 10 adds another argument to this
discussion. The compounds with swallow-
tailed lateral substituents show nematic
properties. The important point in this se-
ries is that, for higher members, Ty in-
creases with elongation of the lateral chains.
This can only be explained if the length-to-
breadth ratios increase at the same time.

There are compounds containing two
long chain lateral substituents that are ne-
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Figure 10. The transition temperatures of the di-n-
alkylketoximino 2,5-bis-[4-n-octyloxybenzoyloxy]-
benzoates. (Data from Weissflog and Demus [184]).

CBH17O—@C00@OOC—@OCBH17
co

CphH!
O\N=C\/ n2n+1
CnHzn+1

matic [185]. If the basic molecule is large
enough (e.g. 5 [185]) the clearing tempera-
tures that can be achieved are quite high.

CoHig

cszo@coo—mé(|3=N—ooc—©»oczH5

C9H19

5 Crl45N 1601

3.3.2 Lateral Ring-Containing
Substituents

Whereas compounds with large flexible lat-
eral substituents, assuming that the lateral
chains are oriented nearly parallel to the ba-
sic molecule, may be considered as variants
of the classical rod-like molecules, com-
pounds with lateral ring-containing substi-
tuents lead to completely new concepts of
mesogens.

The first examples of mesogens with lat-
eral aromatic substituents were synthesized
already in Vorldnder’s group [18, 186].
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Mauerhoff prepared the nematic compound
6 [186]. This field of liquid crystal chemis-
try, which was for a long time forgotten, has
been re-activated by Cox et al. [188], Gal-
lardo and Miiller [189] and Weissflog et al.
[190-192].

CH3O@CH=NN=CH@OCH3
N=cH~(O)-0cH,

6 Cril59N2181

In the series represented by compound 7
[188] which have monotropic nematic prop-
erties, the lateral phenyl group is attached
without a spacer. It is not easy to under-
stand, why compounds with very bulky sub-
stituents are mesogenic. Hoffmann et al.
(193] investigated compound 8 in the solid
state by X-ray analysis. As was already

C5H130—©—C O OOC—©—OC6H13
O

7 Cr65N701

OOC‘©—OC2H5

8 Crl185(N166)1

known for related compounds, the pheny-
lene bis(benzoate) three-ring skeleton was
found to have a non-planar, but greatly ex-
tended shape. The lateral substituent is
largely aligned parallel to the long axis of
the basic molecule. Assuming that a similar
conformation also exists in the nematic state
(as it has been found by Perez et al. [193 a]
in similar case), this bulky but, in total, rod-
like molecular shape can explain the meso-
genic properties. Similar results have been
obtained by Weissflog et al. [194] by X-ray
analysis of an aromatic carboxylic acid with
a bulky lateral substituent.

In more recent papers, compounds have
been described in which the lateral substitu-
ents are attached via spacers [191-192]. As
the spacer length is increased, the clearing
temperatures are seen to alternate distinctly
(Figure 11).

Lateral substituents can be in different
positions of the basic molecule [195], and
lateral aromatic substituents can have sev-
eral substituents themselves [191, 192] or
they can be alicyclic [191]. In the so-called
A-shaped mesogens [196], which occur in
nematic and smectic A phases, the aromat-
ic lateral substituents, as in older examples,
are bound by carboxylic groups. Matsuna-
ga et al. [20] synthesized 1,2-benzene de-
rivatives and 2,3-naphthalene derivatives,
which may be considered as compounds
with ring-containing lateral substituents, at-
tached at a terminal benzene ring. Fig. 12
presents the transition temperatures of a ho-
mologous series of this type. The first com-
pounds of this U-shaped type were already
synthesized by Vorldnder and Apel [16]. Re-
cent investigations by Attard et al. [187] in
U-shaped compounds proved the existence
of bilayers in the different smectic phases.

T/°C|  Cy4H,,0<O)> coo@ooc-@ 0CgH 4,

C00-(CH,),<O)
100

90 L
on

804

70

60+

o 2 4 6 n
Figure 11. Transition temperatures of @-alkylphe-

nyl-2,5-bis-(4-n-octyloxybenzoyloxy)benzoates. (By
courtesy of Weissflog et al. [191]).
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Figure 12. Transition temperatures of 1,2-pheny-
lene-bis-[4-(4-n-alkyloxyphenyliminomethyl)ben-
zoates]. (By courtesy of Matsuzaki and Matsunaga
[20D).

006~O)-cH=N~<)—0Cnzn+1
OOC‘@’CH=N‘©—OCHH2,‘+1

In 1,3-benzene derivatives like compound
9, first synthesized by Matsunaga et al.
[197], recently ferroelectric properties have
been claimed [197a, 197b]. The reinvesti-
gation and new synthesis of several such
“banana-shaped” molecules by different
groups [197¢, 197d] proved antiferroelec-
tric behaviour, which is striking, because the
molecules are achiral.

3.3.3 Lateral Two-ring-
Containing Substituents

Matsunaga and coworkers [20] also synthe-
sized compounds of benzene substituted at
positions 1, 2 and 3, which may also be con-
sidered as basic molecules with two large

ring-containing substituents (see 9 and Ta-
ble 37). The compounds exhibit classical
smectic B and smectic A phases. Because of
the excessive steric crowding at the central
benzene ring, the three substituents prob-
ably cannot be parallel to one another, which
may explain the relatively low transition
temperatures compared to similar benzene
derivatives with two substituents. It should
be mentioned here that benzene derivatives
with three large substituents in positions 1,
3 and 4 exhibit columnar phases [198].

CH

0 0
/©/C\O O,C
H : ~
jo el
CaHi7 CaHi7

9 Cr97.7Sm2156.4SmC, 161.41 [197b]

z-0

Table 37. 1,2,3-tris[4-(4-n-Alkyloxybenzylidene-
amino)benzoyloxylbenzenes (data from Matsuzaki
and Matsunaga [20]).

N=C
R= CnH2n+l @
0-R
n Cr SmB SmA I
6 . 89 (¢ 87) . 119 o
7 . 96 (¢ 87) . 119 e
8 . 96 (¢ 88) . 122 o
9 e 101 (¢ 85) . 121 .
10 e 100 (¢ 83) . 122 o
12 e 104 - -~ o 119 o
14 e 106 - - . 118 e
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Goring et al. [199] in three-fold substi-
tuted benzenes found calamitic phases (e.g.
10 [199]). The molecules are described as
having a ‘tuning-fork-like’ shape. Due to
the long spacers between the central ring
and the substituents, the latter are decou-
pled, and therefore layer structures can be
formed. In 10, there are two smectic C*

COOR
OOCR

COOR
Cl

= —cranro-{O)<(O)-o0c—~O)-ogH-cas
3

10 Cr82 SmC* 92 SmC¥ 112 1

phases of different structures. The smectic
C{ phase has a layer thickness related to the
half-molecule length, and the smectic C5
phase has a layer thickness related to the full
molecule length. The authors compare the
situation of their sterically polar molecules
with the situation in molecules with strong
electric dipoles, in which polymorphism of
smectic A and C phases is well known. With
somewhat different substituents in the giv-
en example, the compound exhibits two
smectic A phases, one of which has an un-
dulating structure [199].

Berg et al. [200] have reported on the lig-
uid crystalline properties of four-fold sub-
stituted benzene derivatives, the structure of
which may be considered as a basic mole-
cule with two ring-containing lateral sub-
stituents (11 [200]). According to X-ray
studies in the solid state, compounds of this
type are cross shaped, with the ring planes

11 Cr123 (N 121)1

Chemical Structure and Mesogenic Properties

of the laterally attached substituents lying
perpendicular to those of the basic moiety.
From this evidence the compounds would
be expected to be discotic nematic, but the
authors claim some arguments for classical
nematic behaviour.

3.4 Swallow-Tailed
Compounds

The swallow-tailed compounds are a special
case of compounds with branched terminal
substituents, with unusually large branches.

Weissflog et al. [201] were able to show
that the clearing temperatures with increas-
ing length of the two terminal chains of the
swallow tail, after passing a minimum, in-
crease (Figure 13). This may be considered
to indicate a somewhat stretched and par-
alle] orientation of the two alkyl chains.

Malthete etal. [87, 202] reported on
some series with branching of the flexible
chain at a greater distance to the central flu-
orene core (e.g. 12 [87]). In the original
paper these compounds were called ‘bi-
forked’.

CgHqan
CZH::;/CH—(CZHO COCsHy4
12 Cr36SmA 521

There are also compounds with swallow
tails on both ends of the molecule (*bi-swal-
low-tailed’ compounds) (e.g. 13 [201]).

C12H2500C. _._._ _-COOC 5Hys
Si=0Ce cH<O)-00c<O—~O) coo—<(:)>—cH-ccooc:ZH25

13 Cr94 (84SmC)N 891

Because of the very bulky swallow tails,
the packing bi-swallow-tailed compounds
in layers of smectic A phases would lead to
large gaps between the cores. Therefore in
smectic C layers the packing in which the
molecules are shifted somewhat in the lon-
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gitudinal direction is favoured. Smectic A
structures are stabilized by filling the gaps
with small molecules; these are called
‘filled phases’ [203, 204].

Recently, bi-swallow-tailed compounds
that show a very unusual polymorphism
have been described. Weissflog and co-
workers [205] have presented a series (Ta-
ble 38) of compounds the lower members of
which show classical smectic C and nemat-

ic phases, while discotic oblique phases be-
gin to appear at chain lengths of 12 carbon
atoms. The re-entrant smectic C phase in the
member with n =12 is unique. This series
shows a position between calamitic and dis-
cotic mesomorphism, similar to that shown
by the tetracatenar compounds (discussed in
Sec. 3.5.3).

Weissflog et al. [206] in another series of
bi-swallow-tailed compounds, found very
complex polymorphism (see 14). In the

CrHon+100C | $OOCnkan+1
c=crQ)rco0—OrcHN-O-O-=cH-r0oc—~OrcH¢
CntHon+100C COOCnHzn+1
14 »n=8 Cr126 SmC 195 Cub 2431 250N 3121
n=9 Cr 125 Col, 158 SmC 195 Cub 238 1

Table 38. Bi-swallow-tailed compounds (data from Weissflog et al. [205]).
CnHon+100C /COOCnH2n+1

nHan+

Ne=c-4D)-coo—Q)crn—O)-crron-Oycr{)-0oc—-cr=c{
/ COOCnHzn+1

CnHon+100C
n Cr SmC,, Col, SmC N I

8 . 89 - - . 191 o 276 °

9 . 91 - - . 197 . 245 .
10 . 104 - - . 194 . 229 .
11 . 106 - - . 189 . 219 .

12 . 95 . 117 ) 154 . 187 . 209 .
13 . 102 - . 175 . 184 - .

14 . 101 - . 180%) - - .
16 . 104 - . 178 - - .

%) On cooling the isotropic liquid, the smectic C phase appears, which transforms to Col, at 175 °C.
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member with n =8 the very rare phenome-
non of a re-entrant isotropic phase occurs.
All phase transitions have been proven by
calorimetry. This series also shows a beha-
viour comparable to that of polycatenar
compounds, with some compounds being
able to form smectic and nematic as well as
columnar and cubic phases. A comparing
investigation deals with the behaviour of
swallow-tailed compounds with linear res-
pectively cyclic sitoxane substituents {206a].

3.5 Polycatenar Compounds

Polycatenar compounds possess two to six
flexible chains attached at the terminal rings
of large rod-like cores, and are called bi-,
tri-, tetra-, penta- and hexacatenar com-
pounds, respectively. Malthete et al. [21]
have published a good review that explains
many details about this substance class.

3.5.1 Bicatenar Compounds

The bicatenar compounds are, of course, in
most cases classical rod-like molecules,
which have been dealt with already. How-
ever, there are some examples in which the
two substituents are notin the para position,
and these deserve special attention.
Compound 15[207,208] compares a clas-
sical rod-like molecule with the analogous
bicatenar compound, which has an addi-

CeH130~©—CH=NCN
R

15 R=H- Cr92SmB 111 N2801
R=CgH,;0- Cr 131 SmA, 1411

tional long flexible chain in the meta posi-
tion. The substitution in the meta position
causes a substantial decrease in the clearing
temperature. Bicatenar compounds of sim-
ilar structure have also been synthesized by
Nguyen et al. [209].

3.5.2 Tricatenar Compounds

There are several examples of tricatenar
compounds with three-ring cores, which
exhibit the classical nematic and smectic
phases [21]. Compared to related com-
pounds that are unsubstituted in meta posi-
tion, there is a remarkable decrease in the
clearing temperatures in these compounds.
The phase behaviour of the tricatenar com-
pound 16 [210] is quite exceptional.

C12H250

@—coo—@)—ooc—@m:w—@ooc—@—ocums

C12Hz50
16 Cr83Cub1721

3.5.3 Tetracatenar Compounds

Considering the different positions (ortho,
meta and para) of substituents, there are
several possibilities, as discussed by Mal-
thete et al. [21]. We present here just one ho-
mologous series, which shows the interme-
diate character of the tetracatenar com-
pounds between that of calamitic and that of
discotic compounds. The transition temper-
atures of this series are given in Table 39
[21]. The lower members exhibit classical
smectic phases, the middle members exhib-
it, in addition, cubic phases, and the higher
members exist in columnar phases, which
according to the proposal of the Bordeaux
group [21] are designated as @ (from
‘phasmidic’) phases.

The change from lamellar to columnar
phases has been observed in several tetra-
catenar series [21]. Obviously, the predom-
inant influence of the cores in the lower
members stabilizes lamellar phases, while
the increasing influence of the flexible
chains in the higher members leads to the
dominance of columnar phases in these
compounds. Cyclohexane rings have also
been introduced into tetracatenar com-
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Table 39. Transition temperatures of tetracatenar compounds (by courtesy of Malthete et al. [21]).

R
R-@CH=N—©—OOC—O-COO—©—N=CH«©-R

R:n_CnH2n+lO— R
n Cr SmC Cub by, I
7 . 152 . 183 - .
8 . 148 . 176 - - .
9 . 146.5 . 168.5 - - .
10%) . 144 . 156 . 165 - .
11%) . 144 . 146 . 163 - .
129 ] 142 - . 162 - .
13 . 141 - - . 163 )
14 . 140 - - . 163 .

@, Hexagonal columnar (phasmidic) phase.
) On cooling: I 157 SmC 138 Cr.
") On cooling: 1 158 @, 147 Cub 140 SmC 135 Cr.

) On cooling: I 160 &, 138 Cr (the hexagonal columnar phase has a large lattice constant).

pounds [21], and ester groups have been
exchanged for thioester groups [212]. An
X-ray investigation of the solid state of a
thioester compound [212] has shown the
nearly parallel orientation of the long-chain
substituents, and the smectic C like lamel-
lar structure, which is typical of a segrega-
tion of an aromatic core and aliphatic flex-
ible substituents.

3.5.4 Pentacatenar and Hexa-
catenar (Phasmidic) Compounds

The few pentacatenar compounds that have
been described in the literature all exhibit
colummnar (phasmidic) phases [21]. Typical
examples of hexacatenar materials are pre-
sented in Table 40 [21]. Despite their simi-
larity of having five benzene rings in the

Table 40. Transition temperatures of phasmidic compounds (by courtesy of Malthete et al. [21]).

=n-C,H;,,,0~
n Cr D, D, I
7 . 82 ° 87 - .
8 . 69 . 87 - .
9 . 73 . 87 - .
10 . 60 . 90 - .
11 . 83 - . 92.5 .
12 . 88 - . 94 .
13 . 90 - . 94 .
14 . 85 - . 94 .

@,,, Hexagonal columnar (phasmidic) phase; @

> Oblique columnar (phasmidic) phase.
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Table 41. Transition temperatures of 2,3,4-trialkyl-
oxycinnamic acids (data from Praefcke et al. [213]).

RO OR
O-H- OR

RO O-H—

RO OR R=-C,Hyp
n Cr N, I
4 ° 75.6 (o 67.9) °
6 . 51.2 . 59.6 .
8 . 54.2 (¢ 509)

core, the melting and clearing temperatures
of these compounds are very low compared
to those of classical five-ring calamitic com-
pounds. This fact and the occurrence of the
columnar (phasmidic) phase are clearly due
to the high concentration of aliphatic chains
in the molecules.

Hexacatenar compounds derived from
cinnamic acid exist as dimeric molecules
(Table 41) [213]. The compounds represent
the seldom occurring biaxial nematic phase.
Some compounds with four rings in the core
are also nematic; however, their biaxiality
has not been proven [213].

3.5.5 Summary of the Phase
Behaviour of Compounds with
More than Two Flexible Chains

The phase behaviour of compounds with
more than two flexible chains is summar-
ized in Table 42.

3.6 Twins and Oligomers

Twins consist of two entities typical for lig-
uid crystals that are connected either direct-
ly or indirectly by a spacer, which can be
rigid or flexible. Vorldnder’s group have
synthesized compounds which, according to
the modern nomenclature, are called ‘twins’
(e.g. [214]; see compounds 3767-3769 in
[34]). In ‘Siamese’ twins [215] two exactly
equal moieties are attached to one another.
The bond between the entities can occur in
different positions and be composed of dif-
ferent linking groups. A survey of the twin
types known up until 1988, is given in [2].
Some twins and oligomers are shown sche-
matically in Table 43.

Table 42. Phase behaviour of lateral long-chain substituted, swallow-tailed and polycatenar compounds.

Compound type No. of chains in Phase
meta-position para-position Nor Sm Cubic Columnar
Lateral long chain 1 2 . - -
Swallow-tailed 0 2-3 . - -
Bi-swallow-tailed 0 4 . . .
Hexacatenar 4 2 %) - .
Pentacatenar 4 1 - - .
3 2 - - .
Tetracatenar 4 0 - - .
3 1 - . .
2 2 . . .
Tricatenar 2 1 - . _
1 2 . — —_

%} Nematic biaxial.
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Table 43. Types of twins and oligomers. many metal complexes (see Sec. 3.9.3 of
this chapter) that, in principle, belong to th
1. ) ple, g to the
::8:: class of fused twins.

Fused twins

2. :%: 3.6.2 Ligated Twins

Ligated (lateral —lateral)
In ligated twins the mesogenic units are con-

3. nected in a central position by arigid or flex-
ible spacers. The first examples of such
compounds with a rigid spacer (18) were

synthesized by Griffin et al. [217, 218].

C7H150‘§©>’N=CH—©>OC10H21
4. e e S iy

n

Tail-to-tail Oligomer: c1oH210@—CH=N@oc7H,5

(terminal —terminal) terminal —terminal 18 Cr119.1 (SmC 103N 112)1

5. [{::%::qn

Cyclic dimers and oligomers

Lateral —terminal Trimer:
Lateral —terminal —lateral

Twins of this type have much higher
clearing temperatures than do the ‘single’
6. mesogens; however, because of the in-
creased melting temperatures, the meso-
genity in some cases appears less pro-
nounced [217-219]. Weissflog et al. [220,
221] have reported twins with long flexible
7. linking groups. With regard to the depen-
dence of the clearing temperature on the
length of the linking group, there is a pro-

Dimer: calamitic—discotic

\ nounced alternation [220] (Figure 14). This
alternation in the Ty is caused by the alter-
Star-like oligomer nating molecular length-to-breadth ratios.

There are also twins in which the linking
groups contain ring systems [220, 221].
Some of these may be considered as trimers
3.6.1 Fused Twins (e.g. 19 [220)).

In fused twins the two mesogenic moieties  canmo-QO)-coo-(Oy-00e{D)-ocuin

are linked rigidly. Four-fold substituted ring ooeHao-O)—~O-orcraocc

systems (e.g. 17 [216]) can belong to this cnr0-O-0040)-000-{D)-ocete
class. Induced in the research in this area are 19 CrlI3NI781

. . . h
CHO @ 00 C oCH .The bebavxour of oligomers with suc

high clearing temperatures cannot be dis-

CHO3_©_OOC @ OCHs cussed simply on the basis of their length-

17 Cr2185N2871 to-breadth ratios. Obviously the parallel
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H17C50@CO.O@OOC@OC5H17

CONH(CH)NHCO

H17C80—©-CO,O—@‘OOC—©—OCBH17

TI°C
=Ty,
. Tm
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Figure 14. Transition temperatures of the a,@-
bis[2,5-bis(4-n-octyloxybenzoyloxy)benzamido] al-
kanes. (By courtesy of Weissflog et al. [220]).

4

orientation of the mesogenic units, which is
necessary for the stabilization of the nemat-
ic state, is already present in the oligomer
molecules.

3.6.3 Twins with Lateral-
Terminal and Lateral-Lateral
Linking

If in the above discussed compounds with
substituents containing large lateral rings
(see Sec. 3.3.2 of this Chapter) the latter are
large enough, they may themselves be con-
sidered as mesogenic units and the com-
pounds that contain them then represent a
new class of twins. By means of systematic
elongation of the lateral substituents, Weiss-
flog et al. [220, 221] have produced exam-
ples of this kind of compound (Table 44).

Table 44, From laterally substituted compounds to
twins (data from Weissflog et al. [221]).

cww—@—coo—(@{ooc st
coocH~QO)-R

R Cr SmC N I
-H ¢ 08 - e 98 o
-0CgHy7 e 89 (o 67) o 104 o

~O)-oceHr ¢ 99 (#885) 1515

00c<0-00c<D)>-0CeH 7 « 130 —

o 107 o

Tschierske et al. [222,222a—c, 241] have
synthesized liquid crystalline trimers and
tetramers with lateral linking. Some of them

are compared with related compounds in
Table 45.

3.6.4 Twins with Tail-to-Tail
(Terminal-Terminal) Linking

Terminal bond twins have been synthesized
by Vorliander [223] in his studies on the in-
fluence of central linking groups on the mes-
omorphic properties of molecules. Figure
15 shows the pronounced alternation in the
transition temperature in a series of com-
pounds. This is due to the alternation of the
molecules between the most elongated and
the bent shape.

There are several reports of twins with
flexible tail-to-tail linking. In most cases
two equal units are linked; twins of this kind
have been called ‘symmetric’ [224, 225,
225a]. Recently a series has been reported
in which the lower members are smectic,
and only at spacer lengths above six carbon
atoms do the compounds appear nematic
[225]. In other cases two unequal units are
connected, producing a ‘non-symmetric’
dimer [226-228, 228 a—b]. There have also
been detailed investigations of the flexibil-
ity of the linking groups [228, 229], and
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Table 45. Laterally linked trimers (by courtesy of Andersch and Tschierske [222]).

e aTas

CHj
Cr 78 (SmC 74) SmA 109 N 113

2. HpC400 O Q OC1gH21

g

Cr 93 SmC 120 SmA

Oy-one

3. HpiCye0 OC1oH24

H1C100

o] 2
o — o

OCgH24

o)

Cr?SmA 1591

e
A g g -
(0]

H31C100 O

Cr73(g8)SmA 1241

0OC1oHz4
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Figure 15. Transition temperatures of tail-to-tail
twins. (Data from Vorldnder [223]).

CoHs0-O)-N=N-D)-00C+(CHIn-00C~O)-N=N—~D)-0C,Hs

dimers involving siloxane containing link-
ing groups have been synthesized [220, 231,
231a]. Attard and Imrie [232] have synthe-
sized dimers with terminal linking groups
that contain rings bearing long-chain later-
al substituents. Because of the ring-contain-
ing centre, these molecules are called
‘trimers’ (see 20 [232]).

Nco-c4H8-o—Q—o-c4Ha-00N

COO(CH,)sCHs
20 Cr130N 1411

Symmetrically substituted linear trimers
also exhibit the odd—even effect [232a].
Twins with phasmidic-like molecular struc-
ture occur in columnar phases [232b].

There are a number of mesogenic salts of
group II metals and of mesogenic metal
complexes, which have the typical molecu-
lar architecture of twins. Such materials are
dealt with in Sec. 3.9 of this chapter.

3.6.5 Cyclic Dimers
and Oligomers

Percec and Kawasumi [233, 234] have syn-
thesized cyclic oligomers using polyether

Table 46. Cyclic oligomers (data from Percec and
Kawasumi [233]).

CH:):;OO ~
O£CH2
Ty

X+Y
2 Cri801

3 g52N 81T

4 g52Cr64N 1151
5 g47N 1081

chains to link biphenylphenylbutane deriv-
atives. Beginning with the trimer, the oli-
gomers are mesomorphic (Table 46). The
compounds show a pronounced trend to the
glassy state. The already mentioned cyclo-
phanes [179, 179a] also can be considered
as cyclic dimers.

3.6.6 Calamitic-Discotic Dimers

In order to investigate the gap between dis-
cotic and calamitic liquid crystals and in an
attempt to obtain biaxial nematics, Fletcher
and Luckhurst [235] synthesized hybrids of
rod-like and disk-like mesogens, by linking
two units to dimers. Among the several
compounds of this type is one example that
shows nematic behaviour (21); however, the

CsHq CsHyy
Csti~Or—=—O)-0(cH0—~O~O-cN
o ©
CsHy{ CsHiq

21 Crl25(N179)1

detailed nature of this phase could not be in-
vestigated. In mixtures with 2.4,7-trinitro-
9-fluorenone compounds of this type give
rise to EDA complexes, which are respon-
sible for the occurrence of nematic phases
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consisting of columns of these complexes
[235]. Novel twin compounds in which
disk-like electron donor and acceptor
groups are covalently bond, form columnar
phases [235a].

Budig et al. {236, 237] combined a py-
ramidal core with six rod-like units by syn-
thesizing tribenzocyclononene derivatives.
With regard to the lengths of the spacers
between the core and the rods, with short
spacers they obtained columnar phases, and
with long spacers they obtained smectic

(mainly A and C) and nematic phases (Ta-
ble 47). Obviously the long spacers decou-
ple the core and the rod-like units. Howev-
er, some effect of stabilizing the mesophase
remains, as can be seen by comparing the
clearing temperatures of the analogous
monomeric compounds with those of the
oligomers listed in Table 47.

Kreuder et al. {238] have synthesized a
trimer consisting of two discotic units linked
by a rod-like moiety. The mesophase of this
compound has not been clearly classified.

Table 47. Transition temperatures of oligomers derived from tribenzo-
cyclononene with rod-like units (by courtesy of Budig et al. [237]).

OR
OR
RO O
RO ‘.
O OR

OR

R

CyaHas—CO--

C,H"—Q-CO—
Can‘O_O‘COz—{CHz]n—
N~N
0#15_45»_-@—0_{&{2]1 —CO—
N—N
Cva—(s»-—Q—O—{CHz],—co_
N—N
cHe—L s »—@—o—[Cth—co—-
NCO—[CHZL—CO—
N—N
c,H,o—{S»——Q-o—c,H,s
Ao

Cr67 Col 1391

Cr 60 Col 278 1
Cr 118 Col 355 Iyecomp

Cr114-1151

Cr140-1421

Cr 117 SmA 1591

Cr 144/152 SmA 160 1
Cr 165 (SmA 133) 1

Cr77 SmC 89 1

Cr78 (N755)1
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3.6.7 Star-Like Compounds

In contrast to older models of the classical
molecular shape of mesogens, some meso-
gens are star-like oligomers with flexible
central units.
Eidenschink et al. [239] have synthesized
derivatives of pentaerythritol (e.g. 22).
CH20QCR

RCOOH,C-C—CH00CR
CH200CR

R= —-(CHz)scsHﬁ

22 SmX 152 SmB 229 SmA 2751

Compounds with shorter spacers showed
poor or no liquid crystalline properties.
From this and the results of X-ray investi-
gations it is concluded that the long meso-
genic substituents are bent at the spacers,
yielding a more elongated molecular shape
despite the tetrahedral symmetry of the cen-
tral carbon atom.

Using nitromethane—trispropanol, pen-
taerythritol or dipentaerythritol as the cen-
tral unit and typical rod-like units with no
spacers, Wilson [240] produced three-, four-
and six-armed star-like molecules that
showed smectic (mostly type A) and nemat-
ic phases. In order to explain the existence
of the mesophases, Wilson compared the
molecules to small sections of side-group
polymers, where the flexibility of the cen-
tral unit is emphasized.

Zab et al. [241] linked glycerol, penta-
erythritol and 1,1,1-tris(hydroxymethyl)-
ethane via spacers of different lengths to
2-phenyl-1,3,4-thiadiazole as rod-like units.
Several of the trimers and tetramers obtained
yielded smectic phases, usually of type C.

3.7 Epitaxygens

Norvez and Simon [242] have reported trip-
tycene derivatives. The mesophases occur-

ring in these materials are unique, and the
compounds have therefore been called epi-
taxygens. Figure 16a shows the chemical
formula of a five-fold substituted tripty-
cene, which in its mesomorphic state forms
layers containing the hard cores in a hexag-
onal arrangement and sublayers containing
the flexible alkyl chains (Figure 16b).

(b) 2‘

Figure 16. (a) A triptycene derivative substituted,
with five chains of equal length. (b) The lamellar
structure of trypticene derivatives. (By courtesy of
Norvez and Simon [242]).
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3.8 Associated Liquid
Crystals

Since Vorlidnder’s work in the 1920s, it has
been known that carboxylic acids can be lig-
uid crystals, but that their esters are either
not mesogenic or are less so [5]. Weygand
[151] concluded that the acids occur as di-
mers, the carboxylic groups forming an ad-
ditional ring. In their investigations on carb-
oxylic acids Bennett and Jones [243] found
that alkyloxybenzoic acids are nematic. A
solid-state X-ray investigation of anisic ac-
id [244] produced structure 23 for this ring.

O H—O
TN
\o——H~---~o/

23

At present several hundred mesogenic
carboxylic acids are known. The dimeriza-
tion occurs due to hydrogen bonding. Ex-
changing the hydrogen atom in the hydrox-
yl group for deuterium leads to a slight de-
crease in the clearing temperatures, because
deuterium bridges are weaker than hydro-
gen bridges [245] (see 24).

O-X—Q
CgH170O C dC—<<:>>—OC£3H17
O-X-

24 X=H: Cr100.8 SmC 107.8 N 147.8
X=D: Cr 99.5SmC 105.0N 144.51

There are few examples of liquid crystal-
line primary amides of carboxylic acids (e.g.
25 [246], further [247]). The unusually high
transition temperatures of these compounds
(two ring Schiff bases usually have a phase
transition temperature below 100°C) are
due to the formation of dimers.

F

F
CH30‘©*CH=N~<©>*
F

F
25 Cr238Sm2681

CONH:

Compounds containing polar groups such
as —CN or —NO, show a strong tendency to
dimer formation. The effect on the meso-
genic properties has been discussed in
Sec. 2.4 of this chapter. ‘

Derivatives of pyridine [248], derivatives
of pyrimidine [249], pyrazine [250] and oth-
er substance classes contain lateral hydrox-
yl groups, which give rise to strong associ-
ation effects. The formation of mesophases
in binary systems of pyridine derivatives
and carboxylic acids is a specific field of re-
search [250a-253, 253a, 253b]. In most
cases complex formation leads to an in-
crease in the length-to-breadth ratio, and
different liquid crystalline phases can be in-
duced. This is illustrated by the example
shown in Figure 17 [250].

Using a tetrapyridyl compound and a di-
carboxylic acid, Wilson [254] has been able
to construct a highly ordered polymeric liq-
uid crystalline network.

Liquid crystalline diols may be consid-
ered as having a structure intermediate
between that of non-amphiphilic and amphi-
philic liquid crystals, i.e. like soaps, ten-
sides, phospholipids and sugars. Compound
26 [255] exhibits phases that are similar in

CH20H

/TN

cons (e
CH20H

26 Cr85.9 SmB* 113.3 SmA* 116.01

structure to the classical smectic A and B
phases, but because of strong association it
is not miscible with such phases. Even sim-
ple n-alkane-1,2-diols with sufficiently long
alkyl chains form thermotropic and lyotrop-
ic mesophases [256]. Staufer et al. [257]
have produced cis,cis-(3,5-dihydroxycy-
clohexyl)-3,4-bis(alkyloxy)benzoates that,
depending on the length of the alkyl chains
exhibit smectic, cubic or hexagonal colum-
nar phases.
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In recent years many different diols
(e.g. [258-261)), tetraols [262-265] and
polyols (mainly derived from sugars {266
270, 270a]) have been synthesized. Com-
pounds of these classes are amphiphilic.
They are mentioned briefly in Sec. 4.5 of
this chapter and are dealt with in detail in
Volume 3 of this book.

3.9 Salt-Like Compounds
and Metal Complexes

Salts of carboxylic acids were among the
earliest known liquid crystalline materials
[271] and were investigated systematically
by Vorldnder {272]. There are mesomorphic
salts of aliphatic and aromatic carboxylic
acids, and in recent years several addition-
al metals have been introduced. Mesophas-
es have also been found in ‘inverse’ salts,
i.e. salts consisting of organic cations and
inorganic anions. A specific area of inves-
tigation is liquid crystalline metallorganic
compounds, because such materials can
have special physical properties (colour,
magnetic properties, labels for Mssbauer
spectroscopy, and electrical conductivity).
More details can be found in the literature
[273-275].

!O&CH—%CH 3

Figure 17. The formation of a meso-
genic complex from hexyloxybenzoic
acid (HBA) and a pyridine derivative
(PYR). (By courtesy of Kato et al.
[250]).

3.9.1 Salts

Most mesogenic salts derived from aliphat-
ic acids, (R-COO), M (R=alkyl (normal
and branched) or alkenyl; M=Li, Na, K, Rb,
Cs,NH?, T1, Pb or other metal) form layered
structures (lamellar phases, neat phases)
that are similar to smectic A phases. How-
ever, mesogenic salts form double layers
and are not miscible with smectic A phases
[276]. Some of the materials show very
complicated polymorphism with a large
number of mesophases [276—279]. In gene-
ral, the transition temperatures of the salts
are quite high compared with those of non-
polar liquid crystals. Most of the salts can
also form lyotropic liquid crystals.

Mesogenic salts can also be derived from
ring-containing carboxylic acids. They in-
clude salts of Na, K, Rb, Cs or Tl with sub-
stituted benzoic acids, substituted cinnamic
acids, mandelic acid or cyclohexyl carbox-
ylic acid [277]. The materials exhibit lamel-
lar phases.

3.9.2 Inverse Salts

Compound 27 [280] may be used as an ex-
ample to demonstrate this substance class,
the members of which form smectic-A-like
layer structures and are usually also lyotrop-
ic liquid crystalline.
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27 Cr118SmA 21151

Arkas et al. [281] have prepared cyano-
propylalkyldimethylammonium bromides
that show smectic A phases. There are also
materials that show smectic A and C phas-
es [282]. The smectic A phases of substitut-
ed pyrimidinium salts are completely mis-
cible with non-polar pyrimidine derivatives
[283].

The lipids, in which salts are formed by
groups of different polarity within the same
molecules, are typical amphitrophic liquid
crystals [42].

3.9.3 Metallomesogens

The metal atoms can be bond by coordina-
tion bonds, either in a slat-like fashion or,
more rarely, by o-bonds [284]. Irrespective
of the nature of the bonds the compounds
may be called metallomesogens [274]. De-
pending on the geometry of the molecules,
metallomesogens can be calamitic or disco-
tic. Rod-like mercury containing com-
pounds were prepared by Vorlidnder’s group
[5, 285].

Compound 28 [285] and many other met-
allomesogens can be considered as twins. In
many cases (e.g. 29 [286] the ligands are
themselves liquid crystals.

@CH=N—@H9~©—N=HC©

28 Cr180N 1841

29 Crl66N 1761

There are metallomesogens that contain
Ni, Pd, Pt, Cu, Ag, Au, V, Fe, Rh, Ir, Zn, Cd,
Hg, Pb, rare earths [274], Mn [287], Rh
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Figure 18. Transition temperatures of silver com-
plexes. (Data from Bruce et al. [289].

CnHznuO-@x@N_eg,_N ®

é1zH250303'

OCnHzn+

[287] or Co [288]. Conventional nematic
and smectic A, C and G phases have been
found.

The silver complexes reported by Bruce
et al. [289] show quite unusual polymor-
phism. In addition to conventional nematic
and smectic phases, in several members of
the series cubic phases have been observed
(Figure 18). These cubic phases, in contrast
to the case in other thermotrophic homolo-
gous series, exist even in members having
relatively short alkyl chains.

It is worth noting that many of metallo-
mesogens are intensely coloured, and thus
their use as guest—host effect dyestuffs has
been tried.

4 Discotics

The first papers on discotic liquid crystals
were those by Chandrasekhar et al. [7] and
Billard et al. [8]. There are several reviews
[9-14, 290] of this topic, which now com-
prises more than 1000 compounds of quite
different substance classes. In the follow-
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ing, with the aid of selected examples, some
of these substance classes are described.

4.1 Derivatives of Benzene
and Cyclohexane

Most of the discotic compounds consist of
a central core to which are attached 3-12
substituents, which may contain ring sys-
tems and/or flexible chains. The most sim-
ple central core is the benzene ring, which
was used for the synthesis of the first disco-
tic compounds [7].

Some of these compounds have three
flexible substituents at positions 1, 3 and 4
(30 [291]). The molecular shape does not

0

Z-0-T

H

H3C CH3
Hi3C NH
b ¢o
0=C R
R

30 R=-CgH,, Cr123 Col,, 152 Ny 1921

seem typically discotic; however, due to asso-
ciations in this amide compound the effec-
tive molecular structure may be different.
1,2,3,4-Tetrasubstituted [292], 1,2,3,5-
tetrasubstituted [293] and pentasubstituted
[293] benzene derivatives can also be dis-
cotic. The most typical structure is the six-
fold substituted benzene, which was used in
the first discotic materials {7]. The substit-
uents can be different in nature (31 [7]).

R
R $© R
0=Co § o0
0=¢? T Oc-0
R 2R
¢=0
R

31 R=-C,H,;5 Cr79.8Col,,83.41

Instead of the flat, stiff benzene ring, the
more flexible and chair-like cyclohexane
ring (a derivative of scylloinositol, a natu-
ral sugar) can be the central moiety (32
[294]).

R

T’ R
o
Q .
)
,’; oC R
32 R:CnH2n+l

4.2 Large Ring Systems

Some large ring systems used as central
cores in discotic compounds are listed in Ta-
ble 48. In particular, triphenylene has been
used frequently. Most of the rings are flat
and stiff. The substituents are flexible, di-
minish the melting temperatures and have
been considered as essential for the forma-
tion of discotic structures. However, start-
ing from scylloinositol (a cyclohexane de-
rivative), Kohne et al. [305] prepared the
hexaacetyloxy derivative, which proved to
be columnar. Variants have been synthe-
sized from hexakis(phenyl-ethynyl)benzene
in which one of the phenylethynyl groups is
exchanged by alkyloxy or a flexible group
linking two of the ring systems into a
dimer; both yield biaxial nematic discotic
phases [306].

Keinan et al. [307] have prepared dis-
cotic tricycloquinazoline derivatives.

The triphenylene derivatives 33, which
have been synthesized by Ringsdorf et al.
[308], can be considered as heptamers. Like
many of the compounds containing large
molecules as their cores, the heptamers have
a strong tendency to glass formation, and
solid crystals could not be obtained. The
clearing temperatures indicate that the



Table 48. Large discotic cores.
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Core compound

Ref.

1. Rufigallol
R O

heged

o R

2. Triphenylene
R R

@)
0=

3. Truxene

4. Bipyran-4-ylidene
R R
Q o

© O

5. Dibenzopyrene
OR

RO @ OR
RO O‘O‘O OR

OR

Hexa-n-octanoate

CiH2nCOO-
CoHazniO-

CnHzn+1 0—@(:00—
anzn+1—@coo—
c..Hg—O—coo—

FF

CgH170 Co0—

F F
C,F3,.1—(CH,),-00C-CH,-O~
Unequal substituents

CnH2n+ICOO_

CnH2n+l_

6. Hexakis(phenyl-ethynyl)benzene

o ©
O —O
S O

R R

CnH2n+l_

[295]

[296]
[8, 296]
{2971

[297]
(298]

[298]

[299]
[9, 300]

[301]

[302]

[300, 303]

[304]
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lengths of the spacers control the meso-
genity. A chain length of n=9 seems to be
the most appropriate, probably because of
the optimal space filling.

4.3 Complex-Forming
Salts and Related Compounds

Some salt-like compounds with wedge-
shaped molecules (e.g. 34 [309] and 35
[310]) show columnar phases over wide
temperature ranges.

CH2
?H-COONa
CH:

34 Cr266Col, 3111

Ry

R2‘§\C:>>~COOK
R

35

In order to form a disk-shaped unit, two
or three of the molecules should be associat-
ed, similar to hydroxy compounds (dis-
cussed in Sec. 4.5 of this chapter). [t is inter-
esting that the corresponding free acid is not
mesogenic; however, the related compound
36 [311] does exhibit a columnar phase.

COCH

36 Cr73Col 1361

Oligooxyethylene esters of this acid also
display enantiotropic hexagonal columnar
mesophases [312]. Brienne etal. [313]
found hexagonal columnar phases in binary
systems of non-mesogenic compounds, due
to the formation of hydrogen bonded com-
plexes.

Compounds 1 and 2 in Table 49 are ex-
amples of discotic metal complexes. They
consist of two extended units, linked by the
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Table 49. Discotic metallomesogens (by courtesy of Chandrasekhar [14]).

1. bis(4-n-Decylbenzoyl)ymethanato copper(Il) [314]

c—o

< ENIVA
o >
o N5

RO, OR [315]
C—Q 00—
g /N >
c~d oit
oR R
3. Octa-substituted metallophthalocyanine [316]

4. Benzo-15-crown-5-substituted phthalocyanine

[317]
5. Tetrakis(alkyldithiolato)dinickel(II) [318]
S S
N
R { P Ni \ R
‘sT sy
:/ < v P SB\
R \\ | N R
s7 s
6. Binuclear copper carboxylate [319]
R R
AN
C\o O__C/
\0 / o/

tetracoordinated metal atom. Examples 5
and 6 are also of this type. After complex
formation, the phase behaviour depends on
the resulting shape of the molecule. As dis-
cussed in Sec. 3.9, complexes with more
rod-like shapes form nematic and smectic
phases, while complexes with board- or
disk-like shapes tend to discotic behaviour.

Several metallomesogens with nonpolar
solvents like alkanes are able to form co-

lumnar nematic phases [319a-319f], in
which the building units are columns con-
sisting of the discotic molecules, separated
by the nonpolar solvent. Columnar nematic
phases can be formed also in mixtures of co-
lumnar charge transfer complexes and non-
polar solvents [319a, 319b, 319d, 319g].
Large disk-shaped rings like substituted
tetraphenylporphyrins [320] or substituted
phthalocyanines [321] can exhibit columnar
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phases. However, the mesogenity is more
pronounced in the metal complexes of such
materials [316, 317, 320-324]. Two exam-
pales of phthalocyanine complexes, one
with a flexible long-chain (compound 3)
and one with flexible cyclic substituents
(compound 4) are given in Table 49.
Cyclic oligoamides such as 37 [324] are
mesomorphic. The open chain analogues (e.g.
38 [324]) show columnar phases [324-326].

Q Q
R-C C—R
\N/_\N/ OC1oHy;
EN N] R = —G—OCan
R~§/ —/ \(“I—R
(6]

HITI ITI I\IJ NH HI\II \ N I:J ITIH
R R R R R R R R R
Cr99 (Col, 93) I Cr 117 (Col, 105) 1

The formation of charge transfer (EDA)
complexes between suitable components
may induce columnar {327-329] or nemat-
ic discotic phases [329-331]. Also the for-
mation of intramolecular EDA complexes
in twin molecules can influence the meso-
morphic properties substantiatly {310, 332].

4.4 Pyramidal (Bowlic),
Tubular and Related
Compounds

The cores of many discotic compounds are
relatively flat. In contrast to this, there are de-
rivatives of macrocycles that deviate substan-
tially from the flat shape, being rather cone-
shaped [333, 334]. These compounds are
called ‘pyramidic’ or ‘bowlic’ compounds.

Chemical Structure and Mesogenic Properties

Zimmermann et al. [333] have prepared
the substituted tribenzocyclononatriene (cy-
clotriveratrylene) 39. The related substituted
orthocyclophanes (cyclotetraveratrylenes)
also form discotic phases (e.g. 40 [335, 336].

S0

R = C4H,,CO0-
39 Cr23.9 Columnar 152.6 I

R R
R R
R R
R R
40 R= CnH2n+l_’ CnH2n+lCOO_

Pyramidic phases have been found also
in cone-shaped calix[4]arene derivatives
[337]. Lehn et al. [338] synthesized macro-
cyclic compounds with a hollow core and
the ability to form complexes (e.g. 41).

Cr 121.5 Tubular 141.51  Cr 101 (Tubular 97.5) I

R\N//\O/\\N/R
S )

e
_ Y
Sl
R/NL/ N\\)
Cr 85 (Tubular 80) 1

41 R=CyuHys0<O)-Co-



By stacking the macrocycles, hollow col-
umns are formed. These phases are called
‘tubular’ and are expected to be useful in the
development of ion-conducting channels
[339]. Tubular phases have also been found
by Idziak et al. [340] in hexacyclene deriv-
atives and by Johansson et al. [341] in com-
plexes of crown ethers.

4.5 Substituted Sugars

There are several polyols that exhibit
discotic mesophases. Diisobutylsilanediol,
which has been known since 1955 {342] but
was not classified as hexagonal columnar
until 1980 [343], associates in dimers [343]
or oligomers [344] in order to form disk-like
units (42).

CHS’CH CH
CHg Z\Si/OH

CHs OH
CH-CH
CHy 2/ n

42 n=2orlarger: Cr89.5Col, 10151

This idea of the association of molecules
resulting in discotic units was also used by
Matsunaga et al. [198, 293] in order to ex-
plain the discotic mesomorphic properties
of tri- and tetrasubstituted benzene deriva-
tives.

Systematic investigations of sugars
[266—-268] have provided additional proof
of the presence of associated building units
in discotic structures. Several isomers, dif-
fering in the steric positions of the hydrox-
yl groups, of inositol are known. Because
inositols contain six hydroxyl groups, many
derivatives differing in the number and
positions of the substituents are possible.
By suitable substitution the derivatives can
be mesomorphic. The kind of mesophase
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(calamitic or discotic) depends in a very
delicate manner on the number and position
of the substituents. Figure 19 gives an im-
pression of this complicated situation.

Some additional examples may help clar-
ity the confusing phase behaviour of inosi-
tol derivatives [268]. The monododecyl
ethers of myoinositol exhibit smectic A
phases, as do monosubstituted glucoside
[346] and nojirimycin (an amino sugar
[347]) derivatives. In diethers of myo-
inositol, however, the phase behaviour de-
pends on the position of the substituents:
4,5-diethers are hexagonal columnar and
3,6-diethers are smectic A. But the 4,5-
diethers of chiroinositol show smectic A
phases, as do the triethers of myoinositol.

The hypothesis of Praefcke et al. [345],
that geminally branched amphiphiles form,
by association, disk-like units, has been
proved also for the case of galactopyranose
derivatives [348, 349].

5 Conclusion

The discussion of the dependence of meso-
morphic properties on molecular structure
shows that the mesogenity of rod-like com-
pounds is quite well understood, on the ba-
sis of both experimental material and theo-
retical explanations. The general supposi-
tion of the necessary shape anisotropy has
allowed the derivation of simple procedures
for predicting the clearing temperatures of
rod-like compounds, e.g. the procedure us-
ing additive increments by Knaak and Ro-
senberg [116, 350] and the computer-aided
predictions as elaborated by Vill [351]. In
addition, the mesogeny of clearly disk-like
compounds is well understood on the basis
of experimental and theoretical results.
There are, however, difficulties with a lot
of unconventional liquid crystalline materi-
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Figure 19. Models of the mesomorphic phases of some inositol derivatives. By courtesy of Praefcke et al. [345].
The enlarged parts represent slices of single columns and show the differences in their compositions. The hy-
drogen bonding regions of the molecules are shaded, and the zig-zags symbolize alkyloxy groups. The phase be-
haviour of the compounds with R=-CgH,; is as follows: (a) monomeric scylloinositol hexaether, Cr 18.4
Col,, 90.8 I; (b) hydrogen-bridged vicinal diol dimer of myoinositol tetraether, Cr 27.7 Col,, 35.8 I; (¢) hydro-
gen-bridged vicinal diol dimer of scylloinositol tetraether, Cr 48.9 Col, 104.4 I; (d) hydrogen-bridged penta-
mer of scylloinositol diether, an all-trans-tetrol, Cr 111.5 Col;, 167.1 L. (Coly,, Columnar hexagonal phase; Col,,

columnar monoclinic phase.)

als. In many cases the effective molecular
structure is not clear because of unknown
conformations or association phenomena.
In some cases the key to understanding their
phase behaviour lies in the flexibility of the
alkyl chains used as lateral or terminal sub-
stituents or, in particular, as spacers. The
decoupling of molecular units by flexible
spacers explains both the properties of sev-
eral classes of mesogenic polymers as well
as those of unconventional liquid crystalline
compounds such as materials with cyclic
lateral substituents, dimers and oligomers,
because this flexibility allows a molecular

shape that is effectively rod-like. ‘Uncon-
ventional’ molecules can assume effective-
ly ‘classical’ (rod-like, discotic) molecular
shapes by means of association phenomena,
which explains the observed mesogenic
properties.

Many unconventional and discotic com-
pounds, especially those with large mole-
cules, show a pronounced tendency towards
the glassy state [196, 3191, 319¢g,352-354,
358-365]. Glassy states are well known and
common in polymers, and liquid crystalline
oligomers show phase behaviours that are
intermediate between those of low molecu-
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lar and polymeric liquid crystals. By using
the typical rod-like or discotic units in com-
bination with polymer backbones and flex-
ible spacers, the different possible means of
linking these moieties give rise to many pos-
sibilities for the formation of mesogenic
polymers [22,272,355-357, 366]. Some of

these possibilities are shown schematically
in Figure 20. A detailed overview of poly-
meric liquid crystals can be found in Vol-
ume 3 of this book. The author is indebted
to Chisso Corporation, Tokyo, for contin-
uous support and to Prof. W. Weissflog,
Halle, for valuable comments.
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Physical Properties of Liquid Crystals

1 Tensor Properties of Anisotropic Materials

David Dunmur and Kazuhisa Toriyama

Liquid crystals are anisotropic, so like non-
cubic crystals some of their properties de-
pend on the direction along which they are
measured. Such properties are known as ten-
sor properties, and in order to provide a for-
mal basis for the description of orientation-
dependent physical properties of liquid
crystals, we will give a brief introduction to
tensors. An authoritative account of the ten-
sor properties of crystals has been written
by Nye [1], but liquid crystals are not expli-
citly dealt with. A convenient way of cate-
gorizing tensor properties is through their
behavior on changing the orientation of a
defining axis system. A scalar or zero rank
tensor property is independent of direction,
and examples are density, volume, energy
or any orientationally averaged property
such as the mean polarizability or mean
electric permittivity (dielectric constant).
The orientation dependence of a vector
property such as dipole moment {4 can be
understood by considering how the compo-
nents of the dipole moment change as the
axis system is rotated. In Fig. 1 pug
(B=x, y, z) are the components in the orig-
inal coordinate frame, while i, (@=X, Y, Z)
are the components in the new axis system.
If the quantities a, g are the nine direction
cosines between the axes of the two coordi-

nate frames, the transformation law for the
vector property becomes:

#&zaax#x+aayﬂy+aazy::aaﬁﬂﬁ (D

where the repeated suffix Bimplies summa-
tion over all values of f=x, y, z. A conse-
quence of the transformation law Eq. (1), is
that under inversion all the components
change sign, y,=— U, this is a polar vector.
There are some quantities (axial or pseudo-

N

Figure 1. Change in vector components on rotating
axes.
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vectors) which transform according to:

Ho=—0gp Hp @

These are usually associated with magnetic
phenomena (angular momentum, magnetic
moments and magnetic fields are axial vec-
tors) and related properties. The nine direc-
tion cosines can conveniently be represent-
ed as a 3x3 matrix, but the components of
this matrix (a,p) are not independent, since
for orthogonal axes the sums of squares of
components in columns or rows are unity,
while the sums of products of components
in adjacent rows or columns are zero. It is
clear that one set of orthogonal axes can be
rigidly related to another by just three an-
gles, and Euler angles (6, ¢, ¥) provide a
consistent definition of three such angles
which are frequently used. The Euler angles
are defined as follows. Assuming that the
axes (x, y, z) and (X, Y, Z) are initially coin-
cident, rotation around Z=¢z, by an angle
gives X —x’, Y —y’, rotation about the new
axis y’ by 6 gives Z—z, x’—>x”, and final-
ly rotation about z by an amount ¢ gives
x”—x and y’' >y, see Fig. 2 [2]. The direc-
tion cosine matrix represented by a,g, can
now be expressed in terms of Fuler angles
by:

axy dxy 4dx;
Ao = A =|ay, dyy 4y
azx Qy; 4z

cosfcosgcosy —singsiny
=] cosfcos@siny +singcosy
—sinfcosy

Having established the transformation law
Eq. (1), first rank tensor quantities (i.e. vec-
tors) may be defined as those properties
which transform according to Eq. (1). High-
er order tensors can be defined in terms of
different transformation laws, and they arise
in a general sense when one vector or ten-
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Figure 2. Euler angles.

sor quantity depends on another vector or
tensor quantity. A simple example of impor-
tance to liquid crystals is the second rank
tensor property electric susceptibility x,
which relates electric polarization (vector)
toan applied electric field (vector). Neglect-
ing nonlinear effects, the electric polariza-
tion F, is proportional to the magnitude of
the applied electric field E, but for aniso-
tropic materials it may not be in the same
direction. Consider a linear (one-dimen-
sional) array of charges aligned at an angle

—cosfsingcosy —cosgsiny sinfcosg
—cosOsin@siny +cosgcosy sinfsing 3)
sin@sin cosf

to an applied electric field (see Fig. 3). A
separation of charge will be induced by the
field resulting in a polarization necessarily
along the direction of the array of charges:
the electric field has induced a component
of the polarization in a direction orthogonal
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Figure 3. The polarization of a linear array of
charges by a field.

to the field. Such a result cannot be de-
scribed in terms of a simple proportionality
between the polarization and the field
(P, % E,), because a field along the x-axis
has induced a polarization along the y-axis.
Obviously the susceptibility also depends
on direction, and for the example given, the
relationship between polarization and
electric field can be written as (for the con-
figuration depicted in Fig. 3, E,=0):

P =y E, + Xy Ey
F:vzlyxEx'FnyEy @

This is readily extended to three dimen-
sions, and using the notation introduced
above:

Fo = Xop Ep (5)

where x5 represents nine coefficients or a
3x3 matrix of nine quantities. The electric
susceptibility of an anisotropic material can
be represented by a matrix of nine compo-
nents, and we can now consider how such a
second rank tensor property changes as a re-
sult of rotation with respect to an orthogo-
nal axis system. The transformation rule for
second rank tensor properties is:

X{xﬁ = Aoy Ags Xy (6)
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where, as before, the repeated suffixes y and
d indicate a summation over all possible val-
ues (x, v, z). Thus the expression for each
component of the transformed property, for
example y.,, contains nine terms, although
in practice symmetry usually reduces this
number. It is possible to use an alternative
transformation rule for second rank tensor
properties, equivalent to Eq. (6), but which
can be expressed in terms of the matrix of
direction cosines, such that:

2 =AxA (7

where A' is the transpose of the direction
cosine matrix.

Although the simplest direction-depen-
dent property is a vector, most physical
properties of liquid crystals are higher order
tensors. All tensor properties can be catego-
rized by their transformation properties
under rotation of the coordinate frame, and
the transformation law for a third rank ten-
sor such as the piezoelectric tensor F g, 1s:

Fygy = ags age dyp Fagp (8)

The tensor rank of a property is also estab-
lished by the number of components it has:
first rank (vector) 3, second rank 9, third
rank 27 and so on. This definition is correct
for three dimensions, but in two dimensions
the number of components for a tensor prop-
erty of rank n becomes 2”. It must be em-
phasized that not all the components are
necessarily independent, and symmetry can
provide relationships between them, there-
by reducing the number that have to be sep-
arately measured.

Many physical properties can be de-
scribed in terms of the response of a system
to an external force or perturbation. This
force might be an electric field or a magnet-
ic field, a mechanical force (stress), a torque
or a combination of these. The effect of an
external perturbation may be described in
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terms of a new tensor property, or a modifi-
cation to an existing one; polarization by an
electric field results in an induced polariza-
tion which adds to any permanent polariza-
tion already present. To lowest order, the in-
duced polarization is linear in the applied
field, but nonlinear terms can be important
for strong fields, as in nonlinear optics. The
nonlinear contributions represented in Eq.
(9) below are described in terms of third
Xapy and fourth rank tensors ¥, 5ys:

Po = pc(x()) + Y Xop EB
B=x.y,z

+ 2 XopyEpEy
B.y=xy.z

+ X

xaﬂ}ﬁ Eﬁ E}, E5 (9)
B.y.0=x.y.2

This equation includes a number of pairs of
repeated suffixes, and each pair indicates a
summation over all possible values. Having
understood this convention (the Einstein
summation convention) it is no longer nec-
essary to write the summation signs expli-
citly in an equation. It is sometimes useful
to represent the physical properties in terms
of their contribution to the internal energy,
since all types of energies are scalar quan-
tities. Thus the energy of a polarized body
in an electric field becomes:

u=—[p-dE=-[p,dE,

(0)

=pa’ Eqy +%Zaﬁ Eg E,

1
+§Zaﬂy Eﬂ Ej/ EOC
1
+Zxaﬁ75 Eﬂ Ey E5 E, (10)

This manipulation is a simple application of
tensor calculus, and illustrates the sim-
plification of the summation convention
(summation signs have been omitted). The
intrinsic symmetry of a property can reduce
the number of independent components;
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thus neglecting complications that may
arise if electric fields of more than one fre-
quency are present, the order of the field
components in Eq. (10) is immaterial.
Hence the properties Y, Xopy a0d Xopys
must be symmetric with respect to inter-
change of suffixes, and this immediately re-
duces the number of independent compo-
nents of the tensor properties to six for ¥,
ten for x,g,and 15 for x,5ys-

Another example of a second rank tensor
property is electrical conductivity o, g which
relates the current flow j, in a particular di-
rection to the electric field:

Jo =0Oap Eg (11)

This may also be written in terms of resis-
tivity p, g as:

Ea = Pup i (12)

and the Joule heating which a current gen-
erates in a sample is a scalar given by:

u=j E=joEq = Popaip (13)

Each tensor property has an intrinsic sym-
metry, which relates to the interchangeabil-
ity of suffixes. However, the number of in-
dependent tensor components for a proper-
ty also depends on the symmetry of the
system it is describing. Thus the properties
of an isotropic liquid, which has full rota-
tional symmetry, can be defined in terms of
a single independent coefficient. The num-
ber of independent components for a partic-
ular tensor property depends on the point
group symmetry of the phase to which it re-
fers. This is expressed by Neumann’s prin-
ciple which states that the symmetry ele-
ments of any physical property of a crystal
must include the symmetry elements of the
point group of the crystal.

Many properties of interest for liquid
crystals are second rank tensors, and these
have some special properties, since they
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can be represented as a 3x3 matrix. Those
second rank tensor properties which have
an intrinsic symmetry with respect to inter-
change of suffixes are called symmetric and
only have six independent components. A
symmetric 3x3 matrix can always be diag-
onalized to give three principal components,
which is equivalent to finding an axis
system for which the off-diagonal compo-
nents are zero. The principal axis system re-
quires three angles to define it with respect
to an arbitrary axis frame, so there is no loss
of variables: three principal components
and three angles being equivalent to the six
independent components. However, if the
material being described (i.e. the liquid
crystal) has some symmetry, then the prin-
cipal axes will be defined, and so it is pos-
sible to reduce the number of independent
components of a second rank tensor to three
(the principal values). For uniaxial liquid
crystal phases of symmetry D, such as N
and SmA, as well as SmB and Col,, and
Col,4 phases, a unique symmetry axis can
be defined, parallel to the director, and there
are just two independent components of any
second rank tensor property Y,g: X (par-
allel) and y, (perpendicular) to the symme-
try axis:

X\ X1 0 0
Kap =Yy 0 x. O (14)
z|0 0

where the z-axis is defined as the symmetry
axis. The values of the components in any
other axis system can be obtained from the
transformation law Eqgs. (6) or (7). Two use-
ful quantities defined in terms of these in-
dependent components are the anisotropy
A and the mean }:

Ay =x1—XL

f=%(lu+2)m.) (15)
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Another special feature of second rank ten-
sor properties in three dimensions is that
they can be represented by a property ellip-
soid, such that the value of the property in
a particular direction is represented by the
length of the corresponding radius vector of
the property ellipsoid. A three dimensional
surface representing an ellipsoid can be de-
fined by

C.y x2+ny yz+CZz z?
+2nyxy+2szxz+2CyZyz=1 (16)

where the coefficients (3 behave as the
components of a second rank tensor. If the
ellipsoid is expressed in terms of principal
axes, then the off diagonal terms in Eq. (16)
are zero, and the equation of the ellipsoid
becomes:

Co X +Cpy P +C 22 =1 (17)

where the lengths of the semi-axes are
given by [C;;]7V/2. The value of this proper-
ty in any direction (1) defined by direction
cosines a,,, a;y, a;, Will be:

C=C,a}, +Cyap+C,af;
:(x2+y2+z2)—-l (18)

so the length of any radius of the property

ellipsoid (Fig. 4) is equal to the reciprocal

of the square root of the magnitude of the
property in that direction.

Figure 4. Property ellipsoid.
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1.1 Macroscopic and
Microscopic Properties

Liquid crystals as anisotropic fluids exhib-
it a wide range of complex physical phe-
nomena that can only be understood if the
appropriate macroscopic tensor properties
are fully characterized. This involves a de-
termination of the number of independent
components of the property tensor, and their
measurement. Thus a knowledge of refrac-
tive indices, electric permittivity, electrical
conductivity, magnetic susceptibilities,
elastic and viscosity tensors are necessary
to describe the switching of liquid crystal
films by electric and magnetic fields. De-
velopment of new and improved materials
relies on the design of liquid crystals hav-
ing particular macroscopic tensor proper-
ties, and the optimum performance of liquid
crystal devices is often only possible for ma-
terials with carefully specified optical and
electrical properties.

The anisotropy of liquid crystals stems
from the orientational order of the constitu-
ent molecules, but the macroscopic anisotro-
py can only be determined through measure-
ment of tensor properties, and macroscopic
tensor order parameters can be defined in
terms of various physical properties. The
anisotropic part of a second rank tensor
property can be obtained by subtracting the
mean value of its principal components:

X = Xop = X Oup (19)
where the Kronecker delta is equivalent to
aunit second rank tensor or unit matrix, such
that for &=, §,,=96,,=9,,=1, otherwise
all other components are zero. Note that
Oyq =3, because of the repeated suffix con-
vention. The advantage of using )(&“2; is that
it is traceless, and the sum of the diagonal
elements is zero. For an isotropic material

Xap=2X 0 p> and s0 Z;“[;:o; thus the quan-
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tity xffé can be used as an order parameter.
Alternatively a dimensionless order param-
eter tensor can be defined as

Q0,3 = constant ( X~ X 50:[5) (20)

and without loss of generality the maximum
value of a principal component (say Q, ) of
Qqp can be set equal to one, so that:

QZZ 1
= constant X 2 [;( _1 ()( +x )}
3LAE VA A

= constant x 2 (Ax],.. Q1)

3

This provides the definition of the constant,
and the macroscopic second rank tensor pa-
rameter becomes:

=3 (A e (xaﬂ -t Saﬁ) (22)

The quantity [Ay] .« refers to the anisotro-
py of the tensor for a fully aligned state for
which the order parameter is one. For a bi-
axial phase (i.e. a phase which has different
properties along each of the three principal
axes), the macroscopic order parameter in
principal axes can be written as:

-2©@-P) 0 0
0up=|0 ~2©@+P) 0| (23)
0 0 0

defining O =[A Jmax] ' (xzz - %(xxx + ny)]

and P= %[A xmax]_l ( Yo — ny) . Other de-

finitions of O, g are possible, but the chosen
one maintains the correspondence between
the macroscopic order parameter and the
microscopic one to be introduced next. One
problem with the macroscopic order param-
eter as defined through Eq. (23) is that it has
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been assumed that the principal axes of the
property X,p and the order parameter ten-
sor coincide. While this is necessarily true
for uniaxial materials, it is not true for biax-
ial materials, the principal axes for which
will be different for different properties.

The relationship between macroscopic
properties and molecular properties is a ma-
jor area of interest, since it is through ma-
nipulation of the molecular structure of me-
sogens, that the macroscopic liquid crystal
properties can be adjusted towards paricu-
lar values which optimize performance in
applications. The theoretical connection
between the tensor properties of molecules
and the macroscopic tensor properties of lig-
uid crystal phases provides a considerable
challenge to statistical mechanics. A key
factoris of course the molecular orientation-
al order, but interactions between molecules
are also important especially for elastic and
viscoelastic properties. It is possible to di-
vide properties into two categories, those for
which molecular contributions are approxi-
mately additive (i.e. they are proportional to
the number density), and those properties
such as elasticity, viscosity, thermal conduc-
tivity etc. for which intermolecular forces
are responsible, and so have a much more
complex dependence on number density.
For the former it is possible to develop a
fairly simple theory using single particle or-
ientational order parameters.

In the context of liquid crystals, single
particle angular distribution functions are of
major interest. They give the probability of
a single molecule having a particular orien-
tation with respect to some defined axis sys-
tem, but they contain no information on pair
correlations between molecules. A familiar
example of single particle angular distribu-
tion functions is the hydrogenic s, p, d-or-
bitals, which are used via the square of the
wave function to determine the probability
distribution for a single electronic charge in
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an atom. For a many-electron atom the wave
function for the electrons is often written as
the sum of component orbital contributions.
In an analogous fashion, the distribution of
molecular orientations in a liquid crystal can
be represented as a sum of contributions of
particular symmetries. Restricting attention
to axially symmetric molecules having an
axially symmetric distribution of orienta-
tions with respect to the director (z-axis), it
is convenient to use Legendre functions
Py (cos @) to describe the angular distribu-
tion function f(8):

1+a R(cos8)+ay P (cosB)
+a3 B (cos8) + ay Py (cos6) +...
(24)

The expansion in Legendre polynomials or
more generally spherical harmonics is cho-
sen because they are orthogonal functions.
The coefficients g;_ in the expansion can be
obtained by multiplying both sides of
Eq. (24) by P; (cos8) and integrating over
0, with the result:

-1
f(9)—2[

[R.(cos8) f (B)sin6dO
ap, =(2L+1)0 T (25)
| f(®)sinodo
0

The ratio of integrals in Eq. (25) is the def-
inition of the average value of Pj (cos8)
over the single particle angular distribution
function, so the single particle distribution
function can now be written as:

[1+3(P, (cos8)) P, (cosh) |
+5(P (cos0)) P, (cosB)
+7{P;(cosB)) P (cosB)
+9(P, (cos6)) Py (cosO)
+...

L -

_1
fe=; (26)

The amplitudes of the coefficients in this ex-
pansion now have a special significance:
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they are the order parameters for the distri-
bution function. A knowledge of all order
parameters will provide a complete descrip-
tion of the single particle angular distribu-
tion function, and the magnitude of each
order parameter gives the contribution of
a particular symmetry to the distribution
function for the disordered structure. If we
wish to consider the distribution function
for a molecule requiring three angles to
specify its orientation, f(2=6, ¢, y) must
be expanded in terms of a set of orthogonal
functions which span the orientation space
of the Euler angles. A convenient set of such
functions are the Wigner rotation matrices,
denoted DI,;,,,, 6, ¢, ), so the single particle
angular distribution function becomes (see
[3] for further details):

. L
f(-Q)=WZ >

L mn=—L

-QL+Dag . D5, (8.0,w) (27

where as before the coefficients a; ,, , can
be obtained from the orthogonality condi-
tion to give:

aL.mn = (Drin(6:0.W)) (28)

and the quantities (D%, , (6, ¢, )) are gener-
alized orientational order parameters, the
indices L, m, n relating to the angular vari-
ables 6, ¢, y.

The symmetry of the constituent mole-
cules and the symmetry of the liquid crys-
tal phase provide some constraints on the
terms which contribute to the distribution
function. For example if a molecule has in-
version symmetry, then only terms even in
L will contribute; similarly for molecules
with a C, rotation axis along the z-direction,
only terms even in n will survive. A full set
of symmetry operations and non-vanishing
order parameters is given by Zannoni [4].
The number of independent order parame-
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ters necessary to specify the angular distri-
bution function will also be reduced by the
symmetry of the liquid crystal phase, see for
example [5]. Returning to the simple case
of uniaxial molecules having inversion
symmetry in a uniaxial phase, the distrib-
ution function can be written as:

1+5(P, (cos)) B (cosO)

+ 9(P; (cosB)) Py(cos6) +... @9

=1
f®)=5

and the two leading order parameters are
(P, (cos0)) and (P,(cos®)): the former is
often referred to as S. One point to notice is
that order parameters are multivalued in the
sense that different distributions may give
the same value for an order parameter, hence
the value of information on more than one
order parameter. For example, a distribution
in which the molecular axes were at an av-
erage angle of about 55° to the z-axis would
give (P,(cos®)) close to zero with a nega-
tive (P4 (cos @)). An isotropic distribution of
molecules is indicated by all order parame-
ters being zero. Alternative but equivalent
definitions of order parameters as tensor
quantities are sometimes more convenient,
particularly in relation to physical proper-
ties. These definitions are only usefully
compact for systems in which either the
molecules or the phase are uniaxial. For a
uniaxial liquid crystal phase of biaxial
molecules, the single particle angular distri-
bution function can be written as [3]:

14385 Ly +5S,51a g
1
fO@.9)= | +7Supy lalgly (30)
+ 9S(xﬁ75 la lﬂ ly 15 +...

where [,=1,, [,, I, are direction cosines of
the director with respect to the molecular ax-
es, and the quantities S, S, 8, §, 5, and S, 846
are ordering tensors of ranks 1, 2, 3, and 4,
respectively, and the summation convention
has been adopted. For phases with inversion
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symmetry all ordering tensors of odd rank
are zero, and the first nonvanishing tensor
order parameter S, g is sometimes known as
the Saupe ordering matrix. Definitions of
the ordering tensors as averages over direc-
tion cosines are:

€39

o=l
Sup = <% (315~ >

Sl g1,
S l
OtﬁY 2 l 6ﬁ7+lﬁ5 +1 6043)

351 lg Ly Iy
l la lﬁ 6},5 +la ly 6&;
8)-5 +la 15 6[37 +l[3 ly 6a5
+lﬂ 15 6ay +ly l5 5aﬁ

1 (85 8107+ By B
8 +6[3}'6a5

SaBy6 =

These tensors are defined to be zero for
an isotropic phase. For uniaxial molecules
there is only one independent component for
each of the tensors:

S, = (cosB) = (P (cosB))

NCn
ll

(3cos 9) > (Py(cosB))

(SCos 0- 3c0s9)>=<1’3(cos9)>

9%
N
If

SZZZZ

(35 cos* 0 —30cos’ 6+ 3)>
=(Py(cos8))

One advantage of this representation of or-
der parameters is that it readily describes
nonuniaxial molecular order in a macro-
scopically uniaxial liquid crystal phase. If
the reference axis frame has been chosen to
diagonalize the ordering tensor, then its
principal components are the order param-
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eters of the different molecular axes with re-
spect to a uniaxial director. If the distribu-
tions of the two shorter molecular axes (say
x and y) are not identical, then §,,#S,,,
which represents a local biaxial ordering of
molecular axes. This may be expressed in
terms of anew order parameter D=5, ,-S,,,
and the Saupe ordering matrix can be writ-
ten as:

1
2(s-D) 0 0

Sap =0 —%(S+D) ol (33
0 0 s

If the Saupe ordering matrix is written in
terms of the laboratory axis frame, but as-
suming now that the molecules are uniaxial,
then phase biaxiality can be described in
terms of the order parameter P, which is
nonzero for tilted smectic phases and other
intrinsically biaxial phases. For example the
diagonal ordering matrix for the molecular
long axis z can be written as:

Si(jZ) = <% (311‘,1 lj>z h 5ij )>

_leg_
2(S=P) 0 0

=0 —%(S+P) 0| (34
0 0 S

and the magnitude of P is a measure of the
different probabilities of finding the z-mo-
lecular axis along the X and Y directions of
the laboratory or phase reference frame.
The Cartesian tensor representation can
be extended to describe the orientational or-
dering of biaxial molecules in biaxial phas-
es by introducing [6] a fourth rank ordering

tensor:
B0 5aﬂ)>

1
Sapii = <§ (Bhacl

(35)
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where [; , is the cosine of the angle between
the molecular axis o and the laboratory or
phase axis i. The tensor S, p,i; still describes
second rank orientational ordering, and
should not be confused with the ordering
tensor §,5,5 which refers to fourth rank
orientational order. For a suitable choice
of both sets of axes, the 81 components of
Sap,ij can be reduced to nine such that i=j
and o=p. This is equivalent to defining
three diagonal Saupe ordering matrices, one
for each of the three axes, i=X, Y, Z:

553 = (3 Bhackp -3 (36)

Taking the diagonal components of these
three matrices allows the construction of a
3%3 matrix:

X X X
Sy Sy Sk
siy=|sk st st (37)

Z oZ Z
So Sy 8%

and the generalized biaxial order parame-
ters can be defined as follows. The long ax-
is ordering is described by S=S%,, while the
phase biaxiality for a uniaxial molecule is
given by P=SX 57 . For biaxial molecules
in a uniaxial phase the biaxial order param-
ter is D=S7 - Syz}, but it would be equally
possible to define a biaxial order parameter
with respect to the X-axis, such that
D’'=8¥.~SX,, and this would equal D"=
s =-S5 ¥ , for uniaxial phases. However, if the
phase 1s biaxial, then the biaxiality defined
with respect to phase axes X and Y will be
different, and this new form of biaxiality is
described in terms of a new biaxial order pa-
rameter:

C=D'-D"
= (S -sh) - (s —s%)

Interms of averages over Euler angles, these
may be defined as:

(37a)
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/\
D |—

(3 cos? 0 — 1)>
(s n28 cos 2l//)>

(sm @ cos 2¢)>

/\

(1 + cosze)cos 2¢ cos2y

A
o W oW

(38)

a
Il

—2cosf sin2¢ sin 2!//]

Slightly different definitions have been
adopted by some other authors with differ-
ent numerical factors. The advantage of the
definitions in Eq. (38) is that these order pa-
rameters are simply related to the compo-
nents of the Saupe ordering matrices
Eq. (34), as indicated in Table 1.

The order parameters introduced in the
preceding paragraphs are sufficient to de-
scribe the orientational order/disorder of
rigid molecules in liquid crystal phases.
They will be used to relate molecular prop-
erties to macroscopic physical properties,
but there are additional sources of order/dis-
order which may affect physical properties.
For flexible molecules certain physical
properties or responses may be sensitive to
a particular group or bond within the mole-
cule, and under these circumstances it is the
order parameter of that moiety which deter-
mines the measured anisotropy. As an ex-
ample, the degree of order of flexible alkyl
chains attached to a rigid molecular core is
reduced by internal rotation of the chain seg-
ments. Using selectively deuteriated meso-
gens, deuterium magnetic resonance is able
to measure the order parameters of different
segments of a flexible chain, and it has been
shown that as expected the orientational
order decreases along the chain away from
the rigid core of the molecule [7].

Local biaxial ordering of molecules in
uniaxial liquid crystal phases can be detect-
ed by spectroscopic techniques such as lin-
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ear dichroism and NMR. It is often more
convenient to probe the biaxial order of so-
lutes in liquid crystal hosts, for example a
detailed analysis of the °D NMR of fully
deuteriated anthracene d, in various liquid
crystal solvents yields both S and D order
parameters [8]. These are illustrated in
Fig.5, where they are compared to mean
field calculations with the ratio (A1) of uni-
axial and biaxial energies as an adjustable
parameter. Itis reasonable to assume that the
orientational order parameters introduced
will also be appropriate for smectic and co-
lumnar phases. However, there are addition-
al contributions to the order/disorder, which
can contribute to the measured anisotropy
in physical properties. The characteristic
structural feature of smectic and columnar
phases is the presence of some translation-
al order, and so the radial distribution func-
tion will have long range periodicity in cer-
tain directions, the amplitude of which will
be determined by a suitable order parame-
ter. Furthermore, there is the likelihood of
coupled orientational and translational or-
der: for example in a smectic A phase mole-
cules will be more likely to be aligned par-
allel to the layer normal (the director) when
their centres of mass coincide with the av-
erage layer position. For disordered smec-
tics there is one dimensional positional or-
der, and assuming uniaxial molecules in a
uniaxial smectic phase, the corresponding
single particle distribution function can be
written as {9]:

[ 2z 2nz
1+ 2<cos(7)> cos(—d—)
. +5(P, (c0s8)) P, (cosH)
’9 =55
f(z,0) 2d .+10<I§(COSO)COS(2%§£)>

-B, (cosO)cos(%Zz)t..

-

L i
(39)
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where translational (t) and translational—ro-
tational (o) order parameters can be defined
as:

fef)

o= <Pz (cosB)cos (&Z—Z» 40)

Columnar phases have two degrees of trans-
lational order, and the corresponding order
parameters now require averages over peri-
odic functions in two spatial dimensions; for
completeness we include the distribution
function for a uniaxial columnar phase con-
sisting of uniaxial disc-like molecules:

1
41
2d. d, @0

r 7
1+ 2<cos( ZCZXJCOS[%Z_}]D
- €OS 2nx cos 2y
d, d,
| +5(P, (cos8)) B, (cosH)
+20( B (cos@)cos 27x cos 27y
d, d,

B (Cosﬂ)cos[ 2;” )cos(zﬂj +...
L i

x dy

f(x,y,0)=

The contribution of translational order pa-
rameters to the anisotropy of physical prop-
erties of liquid crystals has not been studied
in detail. Evidence suggests that there is a
very small influence of translational order-
ing on the optical properties, but effects of
translational order can be detected in the
measurement of dielectric properties. There
are strong effects in both elastic properties
and viscosity, but the statistical theories of
these properties have not been extended to
include explicitly the effects of translation-
al order.
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Figure 5. Uniaxial and biaxial order parameters for
anthracene d,; in different liquid crystal solvents:
(D) = ZLI1167 (best fit A=0.6); (O) ~ E9 (1=0.4);
(©) —~ Phase 5 (A=0.3), reproduced from [8].

Having defined orientational order pa-
rameters, it is now possible to develop a
general statistical theory which relates the
physical properties of molecules to the mac-
roscopic properties of liquid crystal phases.
There are however many simplifying ap-
proximations which have to be introduced
to give usable results. An important factor
is that the nature of the property will deter-
mine the order parameters that will be in-
cluded: in particular a property of tensor
rank »n will in general require order param-
eters up to tensor rank n to specify it.

If K,p is a molecular second rank tensor
property, the principal components of which
are k™, K(’") and «7 defined in a molec-
ular axis system then using the transforma-
tion rule for second rank tensors, the prop-
erty in a laboratory frame is:

Kaﬁ = aay aﬂg K';,gq) (42)

Ignoring the effect of molecular interac-
tions, which is a gross assumption, the mac-
roscopic response X, g measured in a labor-
atory axis frame will be the molecular
property multiplied by the number density,
averaged over all possible orientations of
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the molecules:
Xop=N <Ka;3> = <aay aﬁ5> 5 (43)

The average over the products of direction
cosine matrices contains the orientational
order parameters, and in terms of the prin-
cipal components of rq%) the anisotropic
part of the macroscopic tensor property be-
comes:

<3aaz ag, - 5a/3>

etmy _ 1o tm)y | ()
=N [KZZ 7 K )} (44)
o7 3 1

+5<3awaﬁx—3aayaﬁy>

(el x5

Those terms in Eq. (44) which have nonze-
ro averages depend on the symmetry of 3,
which by Neumann’s principle must contain
the symmetry of the phase to which it re-
lates. If the phase is uniaxial, the principal

components of ¥ become:

(my _ 1 (. (m) . (m)
x(”)— N S[KZZ Z(KH +Kyy )}
[
3 D
+3 (x;;"> - K§’y"))
1

el
w=-314 (45)

+?(K(’") K‘;’;l))

where the order parameters S and D are de-
fined by Eq. (38). Comparison of Eq. (45)
with the definition of the macroscopic order
parameter Eq. (22) shows that:
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Figure 6. Reduced values x{® and y{ as a function

of reduced temperature plotted according to Eq. (45)
using order parameters calculated using mean field
theory. Open squares (OJ) assume no molecular bi-
axiality, so D =0, full circles (@) are for an assumed
molecular biaxiality of 0.3 and a A value of 0.3.

For perfect alignment Q,,=S8=1, and the
Macroscopic anisotropy (Ay)max=N[k" -
172 kfc;")+k;'y”)], which is simply N times the
molecular anisotropy. Both order parame-
ters S and D contribute to the anisotropy of
second rank tensor properties, but they can-
not be separated from a single measurement
of the macroscopic anisotropy. The behav-
ior of the macroscopic property components
as a function of temperature is illustrated in
Fig. 6 for a material of positive molecular
anisotropy, for various values of the order
parameters S and D calculated from mean
field theory; for a negative anisotropy ma-
terial the signs of the parallel and antipar-
allel components are interchanged.

If the liquid crystal phase is biaxial, then
any second rank tensor property has three
independent principal components. These
are the diagonal elements of the anisotrop-
ic tensor xf;/)g, and can be expressed in terms
of the order parameters introduced for bi-

_ (my_ 1 {(m) , .(m)
Zﬁfl):_ﬂ (S P)[Kzz z(Kxx +Kyy ):l
3 D-C )
+ S (K,({}f)—rcg;”)

(47)

It has been assumed that molecular proper-
ties contribute additively to the macroscop-
ic tensor components, which are conse-
quently proportional to the number density.
If intermolecular interactions contribute to
the physical property, then deviations from
a linear dependence of the property on den-
sity are expected. Also the contribution of
orientational order will be more complex,
since the properties will depend on the de-
gree of order of interacting molecules. Ef-
fects of molecular interactions contribute to
the dielectric properties of polar mesogens,
and are particularly important for elastic and
visoelastic properties. Molecular mean field
theories of elastic properties predict that
elastic constants should be proportional to
the square of the order parameter; this result
highlights the significance of pairwise inter-
actions.
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2 Magnetic Properties of Liquid Crystals

David Dunmur and Kazuhisa Toriyama

In Sec. 1 of this chapter it is shown that mac-
roscopic anisotropy in liquid crystals can be
related to molecular properties through ap-
propriate microscopic orientational order
parameters, as in Eq. (47) of that section.
This relationship assumes that the macro-
scopic response of a liquid crystal is simply
the sum of the individual molecular re-
sponses averaged over an orientational dis-
tribution function (i.e. interactions between
molecules are ignored, except to the extent
that they determine the orientational order).
For most physical properties such an ap-
proximation is very crude; however, mag-
netic properties are only very weakly influ-
enced by intermolecular interactions, and so
it can be assumed that the magnetic response
of liquid crystals is simply the aggregated
molecular response. The weak interaction
between molecules and magnetic fields is
shown by the magnetic permeability rela-
tive to that of free space for nonferromag-
netic materials, which is close to unity. The
magnetic response of materials depends on
their electronic structure, and the suscepti-
bility may be negative, characteristic of
diamagnetic compounds, positive denoting
a paramagnetic response, or ferromagnetic
which indicates a permanent magnetization
resulting from coupling between electrons

on constituent atoms, ions or molecules; fer-
romagnetism is largely restricted to the sol-
id state. Both diamagnetic and paramagnet-
ic liquid crystals are known, and ferromag-
netic liquid crystals have been prepared
from colloidal suspensions of ferromagnet-
ic materials in a liquid crystal host.

2.1 Magnetic Anisotropy

Like other tensor properties of liquid crys-
tals, the magnetic susceptibility is aniso-
tropic, and so magnetic fields can be used
to control the alignment of liquid crystal
samples. This is perhaps the single mostuse-
ful application of the magnetic properties of
liquid crystals, and the combination of mag-
netic field alignment with some other mea-
surement forms the basis of many experi-
mental investigations.

Macroscopically the magnetic suscepti-
bility relates the induced magnetization M
to the strength of the magnetic field, but as-
suming that local field effects are ignored,
the susceptibility is usually defined in terms
of magnetic induction B. For this chapter the
magnetic induction will be referred to as the
magnatic field, and the magnetization is



given by:
mag

Mo = 115" 5% By (1)

where [, is the permeability of free space.
The magnetic contribution to the free ener-
gy density becomes:

8mag = _I By dM,
= —1y" [ By %04 Bs
= 80~ 15 Zap Ba By @)

Xap1s a volume susceptibility, but a molar
mol

susceptibility y,5 may be defined as
Yo = Xap V™ 3)

where V™! is the molar volume. The sus-
ceptibility has the symmetry of the material,
so expressing this in terms of the principal
axes of y gives for the free energy density:

8mag =go—%u5‘
'(lnﬂlz‘*ZrBf""Zle)
=go _% ;' B?
'(Zn cos> @+ y . sin” B sin’¢

+x. sin? 8 cos? ¢) 4

where 6 and ¢ are polar angles defining the
orientation of B with respect to the princi-
pal axes of the susceptibility. For a uniaxial
material y,-=y, and:

8mag = 80— % #51 B2 (Z_L + AZCOSZ 9)
=go—%u61B2h
- 2 Ho' Ax(B-ny? (5)

where Ay =x,—x., and n is the director,
which also defines the principal axis of the
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susceptibility for uniaxial materials. From
Eq. (§) it is clear that the sign of the aniso-
tropy Ay will determine the orientation of
the director with respect to a magnetic field.
In order to minimize the free energy, the di-
rector will align parallel to the magnetic
field for a material having positive Ay,
while for negative Ay the director will be
perpendicular to B; both situations can oc-
cur in practice.

As explained earlier any anisotropic
property can be used to define a macroscop-
ic order parameter, and because it is largely
unaffected by molecular interactions, the
magnetic susceptibility is a particularly use-
ful measure: definitions are given as Egs.
(21) and (22) of Sec. 1 of this chapter. The
value of Ay,.. corresponding to perfect
alignment can in principal be obtained from
measurements on single crystals or from
molecular susceptibilities. Eqs. (45) and (47)
of Sec. 1 of this chapter relate a macroscop-
ic susceptibility to a microscopic molecular
property K,g, and introduce appropriate or-
der parameters. The molecular susceptibil-
ities K, K, kK, are defined for the princi-
pal axes of the molecular susceptibility,
which may not coincide with the axes that
define the local orientational order; howev-
er, it is usually assumed that any differenc-
es can be neglected. Measurements of the
magnetic susceptibility can provide a use-
ful route to the order parameters of liquid
crystals [1, 2], but require a knowledge of
the molecular susceptibilities. These are not
usually available for mesogens, but they can
be obtained from single crystal measure-
ments, provided full details are available for
the crystal structure; the method for deriv-
ing molecular susceptibilities from crystal
susceptibilities is explained in detail in [3].
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2.2 Types of
Magnetic Polarization

2.2.1 Diamagnetism

A diamagnetic response is the induction of
a magnetic moment in opposition to an ap-
plied magnetic field, which thereby raises
the free energy. Thus a diamagnetic materi-
al will be expelled from a magnetic field, or
will adjust itself to minimize the diamagnet-
ic interaction. Most liquid crystals are dia-
magnetic and this diamagnetism originates
from the dispersed electron distribution as-
sociated with the molecular electronic struc-
ture. The diamagnetic susceptibility is a
second rank tensor, and its principal com-
ponents can be expressed as:

2
i €
xedis = _ 4#0 <m2+nz>
€

mm — 4me +n
2
da__€ Mo/ 2 2
Ko = . (m?+1 ) (6)

where e is the electronic charge, m, is the
mass of an electron, [, m, n are the molecu-
lar axes, and the quantities {m? +n?) are av-
erages over the electron distribution for a
plane perpendicular to the component axis
(! in this case see Fig. 1).

The induced diamagnetic moment de-
pends on the extent of the electron distribu-
tion in a plane perpendicular to an applied
magnetic field. In a molecule, delocalized
charge makes a major contribution to x%i#,
and in particular the ring currents associat-
ed with aromatic units give a large negative
component of diamagnetic susceptibility for
directions perpendicular to the plane of the
aromatic unit. It is for this reason that the
diamagnetic anisotropy of most calamitic

Figure 1. Diagram of molecular axes with represen-
tation of the perpendicular plane.

mesogens is positive since both components
are negative, but |xl| > lx” |

2.2.2 Paramagnetism

Molecular paramagnetism is mostly con-
nected with unpaired electron spins, which
have associated magnetic moments. For
paramagnetic mesogens the electron spin is
introduced by metal centres, and one of the
motivations for research into metal-contain-
ing mesogens is the desire to prepare para-
magnetic liquid crystals. Orientation by an
external magnetic field of the magnetic mo-
ment derived from an electron spin will in-
duce a magnetization along the field direc-
tion, and so provides a positive contribution
to the magnetic susceptibility:

2
—para _ Ho8 Hps(s +1)
K ST 7

where g, is the electronic g-value, s is the
total electron spin quantum number and pig
is the Bohr magneton. kP is the isotropic
molecular paramagnetic susceptibility, and
the coefficient of 1/3 arises from the isotrop-
ic average of {cos?8) over the spin orienta-
tion in a magnetic field. The temperature de-
pendence of xP** follows a simple Curie
Law, and as written there is no anisotropy
in kP®2 since in most molecules the un-
paired electron spin is decoupled from the



molecular structure and will align with an
external magnetic field independently of the
orientation of the molecule. Anisotropy in
kP** can be introduced if the g-value be-
comes anisotropic. The g-value is in fact a
tensor quantity which describes the modifi-
cation to the magnetic field experienced by
the electron spin arising from the electron
distribution in the molecule. It is analogous
to the nuclear shielding in nuclear magnet-
ic resonance, and it contributes to the mag-
netic internal energy as:

Umag = _ggzﬂ YeSa Bo (8)

where 7, is the electronic magnetogyric ra-
tio and s, is the vector component of the
electronic spin. Interaction between an elec-
tron spin and its local electronic environ-
ment changes g. from its free-electron val-
ue of 2.0023. These interactions are termed
spin—orbit interactions, since they arise
from a coupling between the electron spin
and the angular momentum of the molecu-
lar orbitals. The principal components of the
molecular paramagnetic susceptibility can
be written as:

e\, 2
Kpara_#o(gii) Hgs(s+1D) ©)
“o 3kpT

Hence using Eq. (45) of Sec.1 of this
chapter for a uniaxial liquid crystal, and ne-
glecting any biaxial local order gives for the
anisotropic part of the paramagnetic suscep-
tibility:

2
(a)para _ 2N Ly Up s(s+1)S 10
X = 3T (10)

() = (s (e5)']

o __ N o 5 s(s+1)S
+ kg T

s~ 1) +(s5) ]

2.2 Types of Magnetic Polarization 207

Thus for a uniaxial g, tensor, the paramag-
netic susceptibility anisotropy and mean
susceptibility can be written as:

ayl@w  NEopzs (s+1)S
[ () ~(et)'] (1)
para _ NHoUgs(s+1)
Ok T
[(gzn)2 +2(gﬁ)2] (12)

Care is necessary in defining the principal
axes of the g, tensor, since they are deter-
mined by the local symmetry of the free-
electron spin, and therefore usually differ
from the molecular axes that define the
orientational order of the mesogen. A con-
sequence of Eq. (11) is that there can be
competition between paramagnetic and di-
amagnetic contributions to the macroscop-
ic anisotropy, so the alignment of a para-
magnetic mesogen in a magnetic field will
be determined by the larger of Ay%? and
Axpara.

There is a further contribution to the mo-
lecular paramagnetic susceptibility from
magnetic field induced distortion of the or-
bital angular momentum: this is known as
temperature independent paramagnetism
(TIP), and is the precise magnetic analogue
of the electronic polarizability that deter-
mines the response of a molecule to a high
frequency electric field. The importance of
Kg}}’ for mesogens is yet to be established:
it is only likely to be significant for mole-
cules with low-lying excited electronic
states that are connected to the ground state
by magnetically allowed dipole transitions;
such states are also important in the circu-
lar dichroism spectra of molecules. Taking
account of all contributions to the molecu-
lar susceptibility, the components of the
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macroscopic susceptibility for a uniaxial
liquid crystal composed of uniaxial mole-
cules can be written as:

_ 2NAxY2s 2NAKTPS
X=x+ +

3 3
i 2Nl DS (e ()
__ NAxYs  NAK™'S
XL1=X— 3 - 3
Nuguas(s+DS [ o \2 2
- WHORERCEDS (as) - (s |

(13)
2.2.3 Ferromagnetism

At sufficiently low reduced temperatures,
and/or strong spin—spin interactions, spin
magnetic moments can become ordered in a
parallel array to give ferromagnetic materi-
als, or ordered in an antiparallel fashion to
give an antiferromagnetic structure. This
behavior is rare in organic materials, for
which ferromagnetic organization only oc-
curs at low temperatures. There is a require-
ment for unpaired electron spins, and so in
the context of liquid crystals, possible fer-
romagnetic materials will almost certainly
require metal-containing mesogens. The
contribution of ferromagnetic or antiferro-
magnetic coupling to the susceptibility can
be described in terms of a modified Curie
Law, known as the Curie-Weiss Law, and
the isotropic susceptibility can be written as:

o= N o 82 ME s(s—1) (14)
3kp (T —0O)

where the characteristic temperature O, the
Curie temperature, is a measure of the fer-
romagnetic coupling, and marks the onset
of permanent magnetization. If © is nega-
tive, then the local magnetic interactions are
antiferromagnetic and @ is called the Néel

temperature. Although no ferromagnetic
liquid crystals have been discovered so far,
ferromagnetic liquid crystals can be pre-
pared by the dispersion of ferromagnetic
particles in a liquid crystal host. In prepar-
ing such systems it is desirable to make the
ferromagnetic particles very small, so that
each particle has a permanent magnetic mo-
ment. Normally in the absence of an exter-
nal magnetic field or special conditioning,
the permanent magnetization characteristic
of ferromagnetic materials forms in domains
of opposing magnetic moments, so that the
total magnetisation is cancelled. However
for sufficiently small particle sizes, the do-
main wall energies become relatively too
high to sustain, and single domain particles
are preferred. This effect is known as super-
paramagnetism or collective paramagne-
tism, and dispersed particles satisfying the
requirements for single magnetic domains
act in fluids as micromagnets: such systems
are known as ferrofluids. The dispersion of
single domain ferromagnetic particles in a
liquid crystal host can form anisotropic fer-
rofluids or ferromagnetic liquid crystals.

2.3 Diamagnetic
Liquid Crystals

Most liquid crystals are diamagnetic and
their magnetic anisotropy arises from the
electronic structure of the mesogens. Delo-
calisation of electronic charge will enhance
the diamagnetic susceptibility and aromat-
ic groups in particular make a large contri-
bution to the diamagnetic susceptibility. In
Table 1 are listed molecular susceptibility
components for a number of molecules to
indicate the likely contributions of various
groups to mesogenic structures. These val-
ues have been obtained from susceptibility
measurements on single crystals.
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Table 1. Molecular susceptibility components from single crystal measurements.

Compound and molecular axes

Molecular susceptibility components Ref.

Nk;/107° m* mol™!  Nx,/10° m* mol”' Nk,/10°° m* mol™!

@ n -1.19 -0.44 ~0.44 [3]
m
o—-<i>—o’CHa 1.46
; -14 -0.9 -0.
HsC 9 0.82 (3]
OO
c —1.38 -0. -
oo 0.59 0.69 [3]
231 0.78 0.85 3]
OOO -3.13 -0.96 ~0.97 [3]
p—Cpren
HaCO—@—N’ -3.08 -1.13 ~1.33 [23]
Table 2. Diamagnetic susceptibilities for liquid crystals.
Compound and acronym Diamagnetic susceptibilities Ref.
Ay/107° m* kg! 2/107° m* kg ™!
CanCN 151 8.43 2]
c,H15 ON 1.37 8.66 12)
M—O‘ o 046 (4]
CeHyy
L~ o 0.42 9.32 )
C7Hss
CN
-0.38 8.87 [2]
CyHys

Most thermotropic mesogens contain ar-
omatic groups, and since the component of
the diamagnetic susceptibility perpendicu-
lar to a benzene ring is greater than the in-
plane component, liquid crystals composed

of calamitic mesogens will have a positive
diamagnetic anisotropy, while liquid crys-
tals of disc-like molecules will have a neg-
ative diamagnetic anisotropy. Thus calamit-
ic nematics and smectics will tend to align
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with their directors along the direction of
an external magnetic field, while discotic
liquid crystals will align with the director
perpendicular to the field. Replacement of
aromatic rings by saturated groups such as
cyclohexyl, bicyclo-octyl or alkyl chains
will reduce the anisotropy of the molecular
core, so that liquid crystals based on
the trans-trans-cyclohexylcyclohexyl core
have a negative anisotropy due to the at-
tached terminal groups. Some results for the
magnetic susceptibilities of liquid crystals
are given in Table 2.

2.4 Paramagnetic
Liquid Crystals

Known paramagnetic liquid crystals are
based on metal-containing mesogens, which
have a variety of metal centres and co-
ordination geometries [5, 6]. A requirement
for paramagnetism is an unpaired spin, but
to have an influence on the magnetic
anisotropy, there must also be a significant
g-tensor anisotropy. The effect of competi-
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tion between diamagnetic and paramag-
netic contributions to the susceptibility is
illustrated by the behavior of salicyl-
aldimine complexes of copper [7, 8]. These
are formed from copper(Il) having a d°
electron configuration, which results in a
square planar geometry around the metal
centre. The g-tensor anisotropy is such that

(gﬁn)z < %((gf,)z +(g;‘1m)2) so that the para-

magnetic contribution to the anisotropy is
negative. For complexes with four benzene
rings in the structure (Table 3, compounds 1
and 2), the paramagnetic term is larger than
the diamagnetic term in the anisotropy, and
so the complexes align with the major axis
(n) perpendicular to the field direction: free
rotation about the molecular long axis is as-
sumed. Increasing the number of benzene
rings to six (Table 3, compounds 3 and 4)
causes the diamagnetic anisotropy to dom-
inate, and the director aligns parallel to a
magnetic field (see Fig. 2).

Electron paramagnetic resonance mea-
surements on these liquid crystals give
g-values of g,,=2.053 and 1/2(gf;+gom)
=2.082. By contrast the corresponding

Table 3. Structures, susceptibility anisotropies and alignment of salicylaldimine complexes of copper [7, 8].

X
N-Y

0.s/
Cu-q,

G

X Y

AxP*/107° m* mol™!

Ax¥*/10° m*® mol™'  Orientation to

magnetic field

C7H1 50—

—Q'Ocmst

CrHis0 L P-C00-  —Ciohzs

CrH;s0— —~£9rCOOL) OC 2H
CHis0— 0012H25

—84.4 72.4 L
-91.5 79.5 1
-74.7 117 I
~66.8 120 I




Ay, -ve, n perpendicular to field

OCizHag

H n gnn

o H OCrHys g
N / U Emm
¢ Z &u

o2 I

OCizHzs

Q
o

Ay +ve n parallel to B

vanadyl (VO) d' complexes have a re-
versed g-tensor anisotropy g, =1.987 and
1/2(g5 +&5,m) = 1.966, and so these com-
plexes always align with their molecular
long axes along the magnetic field direction.
Mesogenic paramagnetic salicylaldimine
complexes of a number of rare earths have

2.4 Paramagnetic Liquid Crystals 211

Figure 2. Alignment of salicyldimine complexes in a magnetic field.

been reported showing SmA phases [9], and
found to have large magnetic anisotropies.
A similar result has been obtained [10] for
a -enaminoketone complex of dysprosium,
but the corresponding gadolinium complex
had a very small paramagnetic anisotropy.
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2.5 Ferromagnetic
Liquid Crystals

The possibility for a mesogenic material
exhibiting ferromagnetism is at the present
time remote. Organic ferromagnets have
been prepared [11, 12], but they mostly have
very low Curie temperatures, well below
the melting points of the compounds. Since
the origin of ferromagnetism is long range
spin—spin interactions, it is unlikely that
these will persist in a fluid liquid crystalline
state, although there may be more chance of
preparing metal-containing liquid crystal
polymers having a potential for magnetic
ordering [13]. A different approach to the
preparation of ferromagnetic liquid crystals
was proposed by Brochard and de Gennes
[14] based on the dispersion of ferromag-
netic particles in a liquid crystal host. As ex-
plained above, ferrofluids can be formed
from dispersions of ferromagnetic materials
that will form essentially single domain par-
ticles. Examples are colloidal suspensions
of ferrite y-Fe,03, magnetite Fe;0, or co-
balt metal in either hydrocarbon or water-
based solvents. Ferromagnetic particles
may be imagined to couple with a liguid
crystal host through interaction between the
magnetic moment of the particle and the
magnetic anisotropy of the surrounding lig-
uid crystal [14]. Depending on the anisotro-
py of the liquid crystal the magnetisation of
the particles should align parallel (positive
AY) or perpendicular (negative Ay) to the
director.

Another mechanism for coupling the or-
ientation of a magnetic particle to a liquid
crystal is through elastic interactions. If the
magnetic particles are anisotropic, then de-
fining the director orientation at the surface
of the particle with a suitable surfactant will
cause a preferred alignment of the particle
in a liquid crystal host. Chen and Amer [15]

succeeded in stabilizing a suspension of par-
ticles of length 0.35 um an 0.04 pm diam-
eter in MBBA. The particles were coated
with a surfactant which defined the director
orientation at the particle surface as perpen-
dicular to the particle axis, and changes in
the observed optical anisotropy in the pres-
ence of a magnetic field were consistent
with the reorientation of the liquid crystal
director perpendicular to the field.

Lyotropic liquid crystals doped with fer-
romagnetic particles have also been studied
[16, 17], and the magnetic particles can be
stabilised in either hydrophobic or hydro-
philic regions. Changes in birefringence
with magnetic fields have been observed,
suggesting that the optical anisotropy of the
liquid crystal has been coupled to the mag-
netic anisotropy of the dispersed particles.
It is possible that such magnetic field effects
in anisotropic ferrofluids may find applica-
tion in the future.

2.6 Applications of
Magnetic Properties

Since intermolecular forces scarcely affect
the magnetic susceptibility, measurements
of the magnetic anisotropy can provide a di-
rect measure of the orientational order.
Using Eq. (13), the anisotropy of suscepti-
bility for a uniaxial liquid crystal phase
formed from uniaxial mesogens can be

written as:
Ay =NAkS (15)

where Ax contains contributions from dia-
magnetic, paramagnetic and temperature in-
dependent paramagnetic terms:

Ak = Axdia 4 A TP (16)

2
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Ak can be obtained from measurements on
single crystals, and provided that accurate
values are available for the density, the
order parameter S can be obtained directly.
An alternative way to determine § from
measurements of the temperature depen-
dence of the susceptibility is to fit values to
a functional form for the variation of S with
temperature. The simplest procedure known
as the Haller extrapolation is described in
the context of birefringence measurements
in Sec. 3.2 of this chapter. The effects of lo-
cal biaxial ordering on the measured suscep-
tibility for cyanobiphenyls has been consid-
ered by Bunning, Crellin and Faber [2] us-
ing crystal data for biphenyl.

Magnetic properties have an importance
in the NMR of liquid crystals [18,19], but
the moments of the nuclear spins respon-
sible for the NMR signal are far too small
to make any contribution to magnetic sus-
ceptibilities. However, bulk susceptibility
corrections to the NMR chemical shift of a
standard immersed in the sample can be
used to determine diamagnetic susceptibil-
ities. The chemical shift of the standard is
shifted to lower fields in a cylindrical sam-
ple due to the bulk magnetization, accord-
ing to:

O observed — Ostandard — '2311 Aii (17)
where J;; is the susceptibility component in
the direction of the external magnetic field.
Diamagnetic liquid crystals will align such
that the smallest component of y is along
the magnetic field direction, and this caus-
es a splitting in the NMR lines, which can
be related to the order parameter. This tech-
nique is extremely useful for obtaining de-
tailed information on the ordering of differ-
ent segments of flexible molecules [18,19]
and can also yield values for the local biax-
ial order parameters of molecules [18]. The
method has been successfully applied to
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both pure liquid crystals and to dopant mole-
cules dissolved in liquid crystal hosts, which
serve to orient the solute molecules. For
these experiments the direction of align-
ment of the director with respect to the mag-
netic field is important, and since most lig-
uid crystals have a positive susceptibility
anisotropy, the director will align parallel to
the magnetic field.

The standard method for measuring mag-
netic susceptibilities is to use a Faraday bal-
ance, which involves the measurement of
the force on a sample in an inhomogeneous
magnetic field [20]; other methods use a
Gouy balance {3], or a SQUID magnetom-
eter (21, 22]. All methods measure a single
component of the susceptibility — the larg-
est for paramagnetic samples, and the small-
est for diamagnetic samples, assuming that
the alignment of the sample liquid crystal is
not constrained by other forces. In order to
obtain the anisotropy, a second measure-
ment is required, and this is usually taken as
the mean susceptibility measured in the iso-
tropic phase. Diamagnetic susceptibilities
are independent of temperature, and it is rea-
sonable to assume that the mean suscepti-
bility in the liquid crystal phase is the same
as in the isotropic phase: hence for positive
materials, the susceptibility anisotropy is
given by:
AZ=%(XH—7() (18)
For liquid crystals having a negative suscep-
tibility, the anisotropy is:
Ax=3(x-x1) (19)
It is not possible to determine the sign of Ay
from magnetic measurements alone.

The ability of magnetic fields to control
the alignment of liquid crystals is widely
used, for example in X-ray structural stud-
ies of liquid crystals, or for optical mea-
surements on aligned liquid crystal films.



214 2 Magnetic Properties of Liquid Crystals

An advantage of magnetic fields over elec-
tric fields for controlling alignment is that
complications due to electrical conduc-
tion or electrohydrodynamic effects are
not present. Competition between aligning
fields has been used to obtain direct mea-
surements of susceptibility anisotropies.
The basis of the method can be understood
from Eq. (5). A similar equation can be writ-
ten for the free energy density of a liquid
crystal in an electric field, such that:

=gy %80 E? (EJ_ +Agcos® 9) (20)

For balancing torques of the electric and
magnetic fields on a liquid crystal:

U Ay B? = gy Ae E? 1)

Thus by measuring the corresponding
fields, and knowing the permittivity aniso-
tropy, it is possible to determine Ay direct-
ly [4].
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The optical properties of liquid crystals de-
termine their response to high frequency
electromagnetic radiation, and encompass
the properties of reflection, refraction, op-
tical absorption, optical activity, nonlinear
response (harmonic generation), optical
waveguiding, and light scattering {1]. Most
applications of thermotropic liquid crystals
rely on their optical properties and how they
respond to changes of the electric field, tem-
perature or pressure. The optical properties
can be described in terms of refractive indi-
ces, and anisotropic materials have up to
three independent principal refractive indi-
ces defined by a refractive index ellipsoid.

Solution of Maxwell’s equations for the
propagation of a wave through an anisotrop-
ic medium gives three principal wave veloc-
ities for directions i=1, 2, 3 as:

sz=(.u§? gii)_l (1

where &, and u;} are the principal compo-
nents of the electric permittivity and mag-
netic permeability tensors, which are as-
sumed to be diagonal in the same frame of
axes. For other than ferromagnetic materi-
als ui} is very close to unity, and comparing
the velocities of the wave in a vacuum
with the velocities of the wave in an aniso-
tropic medium gives the principal refractive

indices as:
n;=(§g; /80)”2 (2)

In fact, two waves of different velocity (hav-
ing the same wave normal but orthogonal
polarizations) can propagate through an op-
tically anisotropic medium along two dif-
ferent directions. This results in the appear-
ance of a double image of an object viewed
through anisotropic crystals, and is termed
double refraction. These two rays have dif-
ferent refractive indices: the ordinary ray
propagates along the wave normal, and its
direction obeys the normal Snell’s law of re-
fraction so that n,=sini/sinr, while for the
other extraordinary ray, the ray direction
and wave normal are not parallel. The two
refractive indices for a particular wave nor-
mal can be obtained from the refractive in-
dex indicatrix [2]. This ellipsoid is defined
by the equation:

(3]
NS}

2

+25 4 (3)

EXR
S
S

ﬂ‘

where n|, n,, and n; are termed the three
principal refractive indices, and the direc-
tions x, y, z are the principal axes of the
electric permittivity tensor (Fig. 1).

For any direction in a crystal (OP) in
Fig. 1, the refractive indices of the two wave
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Figure 1. The optical indicatrix, where the principal
refractive indices are labelled as 1, n, and n5. Refrac-
tive indices corresponding to the wave front normal
OP are shown as n” and n”.

fronts normal to OP that can propagate are
given by the semi-major and semi-minor
axes of the ellipse perpendicular to OP. In
the case of an indicatrix of revolution, which
would represent a uniaxial liquid crystal,
n;=n, which is the ordinary refractive in-
dex n,, and for light propagating along the
z-direction (i.e. 6=0), which is the symme-
try axis of the indicatrix, the ordinary and
extraordinary rays are coincident; the larg-
est refractive index (n; in the figure) is
called n,. Materials having two equal prin-
cipal refractive indices are referred to as uni-
axial, and the unique direction z is the optic
axis. The special feature of the optic axis is
that light of any polarization travels along
this axis without any change in its polariza-
tion (i.e. the material responds as an opti-
cally isotropic medium. The difference
between the two independent principal re-
fractive indices An=n3—n, is termed the bi-
refringence. For light propagating along a
direction which is not the optic axis, the or-
dinary and extraordinary rays are not coin-
cident and they travel with different veloc-
ities corresponding to different refractive

indices. For any direction, one ray has a re-
fractive index of n,, but the refractive index
of the extraordinary ray depends on direc-
tion, such that:

-1
ne(9)2 _ (cosz 6 + smi()} (4)
ny n3

where the direction makes an angle 6 with
the z-axis. If n| #n,#n;, there are two optic
axes for which the perpendicular cross-sec-
tion of the indicatrix is circular, such mate-
rials are biaxial, and there are two directions
along which the material appears to be op-
tically isotropic.

Many of the interesting properties of lig-
uid crystals are a result of chirality or hand-
edness, which is manifest in optical proper-
ties by optical activity. For isotropic mate-
rials or anisotropic materials viewed along
their optic axes, optical activity causes the
plane of polarization of propagating light to
be rotated by an angle ¢. This can be ex-
pressed in terms of a difference between re-
fractive indices for left (;) and right (n,) cir-
cularly polarized light:

6="L0m-n) (5)
where d is the path length and A is the
vacuum wavelength of the light. For aniso-
tropic materials including liquid crystals,
the optical activity interacts with the linear
birefringence, and the two propagating
waves which correspond to a particular
wave normal are elliptically polarized, the
axes of the ellipses being perpendicular.

For an absorbing medium the refractive
index can be represented as a complex
quantity consisting of a real part (r/) and an
imaginary part (k;):

n;=n;—ik; (6)

and using the relation with the permittivity,
we have:
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i

ni2 — E(;l [E(real) _ iglgilmagmary)]

2 2 -1 (real
nt—kF =gg' el

Zni,ki - 8;1 glgiimaginary) (7)
The real part of the refractive index deter-
mines the speed of light through the medi-
um, while the imaginary part measures the
attenuation of its intensity, so k;; is defined
as the absorption coefficient. If the absorp-
tion coefficients for light plane-polarized
along different directions are different, then
the material is said to exhibit linear dichro-
ism. Nonchiral materials can only be line-
arly dichroic, but chiral materials can also
show circular dichroism, which arises from
a difference between the imaginary parts
(absorption coefficients) of the refractive
indices for left and right circularly polarized
light.

3.1 Symmetry of Liquid
Crystal Phases and
the Optical Indicatrix

The symmetry of liquid crystalline phases
can be categorized in terms of their orienta-
tional and translational degrees of freedom.
Thus nematic, smectic and columnar phase
types have respectively three, two, and one
degrees of translational freedom, and with-
in each type there can be different phases
depending on the orientational or point
group symmetry. Their optics (uniaxial, bi-
axial, optically active) are determined by the
point group symmetries, which are listed in
Table 1 for common liquid crystal phases;
the optical symmetries of variants of these
phases can usually be established directly
from their structures.

It will be seen that most nematics and or-
thogonal smectic and columnar phases are

uniaxial, with two equal principal refractive
indices, while the tilted smectic and colum-
nar phases are biaxial. The optical sym-
metries of liquid crystal phases can be
determined by conoscopic observation of
aligned thin films [3] but the technique is
difficult, and made more so by the small bi-
axiality of tilted liquid crystal phases. Prin-
cipal refractive indices of liquid crystals
range from 1.4 to 1.9, and uniaxial birefrin-
gences An=n,—n,, can be between 0.02 and
0.4; negative birefringences are associated
with discotic versions of liquid crystal phas-
es (e.g. discotic nematic or columnar phas-
es). For biaxial liquid crystals, all three prin-
cipal refractive indices are different, but
usually one (n3) is significantly greater (or
less) than the other two, in which case the
uniaxial birefringence can be defined as
An=nz— 1 (n,+n,) and the biaxiality is
on=n,—n,. The biaxiality of liquid crystals
1s small (=0.01) [4, 5], which is a conse-
quence of the small degree of structural bi-
axiality of these phases.

3.2 Molecular Theory
of Refractive Indices

The characteristics of optical and electro-
optical liquid crystal devices are determined
by the refractive indices of the materials,
thus an understanding of the relationship
between refractive indices and molecular
properties is necessary for the design of
improved liquid crystal materials. In devel-
oping a molecular theory for any electrical
or optical property, the problem of the
internal or local electric field has to be
addressed. This arises because the field ex-
perienced by a molecule in a condensed
phase differs from that applied across the
macroscopic sample. The internal field has
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Table 1. Symmetries of common liquid crystal phase types: only those phases with well-established phase struc-
tures are included. Crystal smectic phases, including the cubic D phase have been omitted, as have recently dis-
covered twist grain boundary phases, and structurally modulated variants of smectic phases.

Liquid crystal phase

Point group and translational ~ Optical symmetry; uniaxial —
degrees of freedom — T (n)

u(+) n3>n,=ny
u(=) nz<n,=ny;
biaxial (b); helicoidal (h)

Achiral calamitic, micellar nematic N or N, D, xT(3) u(+)

Achiral nematic discotic (N), D, XT(3) u(-)

columnar nematic (N¢q)

Chiral nematic (cholesteric) N* D, XxT(3) b, h, locally biaxial but

globally u(-)

Biaxial nematic (N) (only micellar confirmed) Dy, xT(3) b

Achiral calamitic orthogonal smectic or Dy XT(2) u(+)

lameliar phases (SmA)

Achiral tilted smectic phase (SmC) CoxT(2) b

Chiral tilted smectic phase (SmC™) C,xT(2) b, h

Orthogonal and lamellar hexatic phase (SmB) D X T (1) locally, u(+)
D¢, X T (2) globally

Tilted and lamellar hexatic phases Co, XT (1 or 2 see above) b

(SmF and Sml)

Chiral tilted and lamellar hexatic phases C,xT (1 or 2 see above) b,h

(SmF" and Sml")

Discotic columnar: hexagonal order of columns, D xT (1) u(-)

ordered or disordered within columns (Coly,, or ,4)

Rectangular array of columns (Col,, or .4) D,,xT(1)

Molecules tilted within columns (Col,, or ) Co, XxT (D) b

a special significance for anisotropic mate-
rials such as liquid crystals. For isotropic
media the Lorentz local field is used

(Eloc = @E) where € is the mean per-

mittivity, and this results in the Lorenz—
Lorentz expression relating the refractive
index to the mean molecular polarizability:

2
n“—-1_Nea
AT 2, (&)
n“+2 3g

where N is the number density and o is the
mean polarizability. For low density gases,
this will be the molecular polarizability, but
in condensed fluids it is an effective or

dressed property, which takes account of
short range intermolecular interactions. In
anisotropic liquid crystals it is reasonable to
adopt the isotropic model for the internal
field, and their principal refractive indices
can be written as:

n’—1 _ N{o;) 9)
242 3g,

The polarizability component (¢;) is the
average value along the direction of the
principal refractive index n;, and n®=
%(nlz+ n%+ n%) is a mean refractive index.
Using the general results for the transforma-

tion of second rank tensor properties, these
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polarizabilities can be expressed in terms of
molecular components and orientational or-
der parameters. For liquid crystal phases of
uniaxial symmetry the optic axis coincides
with the average alignment direction of the
molecules, termed the director, and from Eq.
(45) of Sec. 1 of this chapter we obtain for
components parallel ({¢)) and perpendicu-
lar ({&))) to the director:

S [a,m -1 (o + amm)} +

y=a+3y - 2
ED(all_amm)
1 S[ann—%(a”+amm)}+
<al>:a+§ . ¢{0))
ED(all_amm)

The principal axes of the molecular polariz-
ability tensor are labelled /, m, n, as shown
in Fig. 2. Thus the importance of order pa-
rameters in determining the anisotropy of
optical properties is clearly demonstrated.
Both order parameters S and D contribute to
the anisotropy of second rank tensor proper-
ties even in uniaxial liquid crystals, but they
cannot be separated from a single measure-
ment of the birefringence.

Figure 2. The principal axes of a molecular polariz-
ability tensor.

If the liquid crystal phase is biaxial, as
with SmC phases, then any second rank ten-
sor property has three independent princi-
pal components and the average polarizabil-
ities corresponding to the three refractive
indices can be expressed in terms of the
orientational order parameters introduced
for biaxial phases:

(o33) =

S [ann - %(a” + amm)] +

‘”% I
ED(all—amm)
(02) =
S+P 1
1 ( + )ann—z(all"*_amm) +
*-3

%(D+ C) (0t — Oty )

(o) =

1
(S_P) ann_"(a +(Xmm) +
[ 2 n jl (11)

%(D - C) (all - amm)

Refractive indices of liquid crystals may be
measured by a variety of methods, but all
require a well-aligned thin film. The sim-
plest method is to use a refractometer with
a suitably coated prism surface to give an
aligned sample, and use of a polarizer per-
mits the separation of the two refracted rays.
This works well for N and SmA phases, but
it is not usually possible to align both direc-
tors for SmC phases; there are also limita-
tions of temperature. Wedge cells have also
been used to obtain refractive indices of lig-
uid crystals, relying on external magnetic
fields for alignment [6, 7]. Guided-mode
methods can be used to obtain refractive
indices [8, 9], while the Z-scan method [10,
11] can be used to obtain information on the
field dependence of refractives indices. It is
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easier to measure birefringence changes of
liquid crystals directly using interferomet-
ric methods, and high precision can be
achieved [12-14]. The wavelength depen-
dence of refractive indices can be obtained
from so-called channelled spectra, which
are interference bands observed from thin
films in spectrophotometers [15-17].

Not only are refractive indices needed to
optimise device and materials design, but
also they provide a simple route to order
parameters. Extrapolation methods can be
used to determine the uniaxial order param-
eter S, if contributions from molecular bi-
axiality (D) are ignored [18—20]. For mole-
cules having axial symmetry (0;=a,,,)
Eq. (9) can be written as:

2
ni —ni _ SAa

(12)
n* -1 o

where Aa=(q,,,— ;). If it is assumed that
the order parameter can be written in a sim-
ple form as:

b
e
Ing

where T/Ty_; is a reduced temperature then

> 2
aplotoflog (’L]rlzfl%j against log (1 - %}

(13)

will give a straight line of intercept A% us-
o

ing which the order parameters S can be cal-
culated from Eq. (12). It is also possible to

Table 2. Molecular polarizabilities and refractive indices for a selection of mesogens.

Mesogen Polarizability Refractive index; A (nm) Ref.
reduced Tg=0.95
Aa/107%° /1070
Cr'm? C*rlm? An n
csH,‘ eN 19.4 375 0.194 1589 633 @ f)
0.194 1.595 589
CSHH<P—©— cN 16.0 36.2 0.125 1.533 589 (b, )
M‘CN 1.1 40.4 0.0452 1.471° 589 (b, ¢)
CsHss ’
Haco_@_ caN —O—CAH; 31.2 41.1 0.21 1.61 633
H 0.22 1.62 589 (g.h)
cw@— cs c_@_ OC,Hs 334 52.8 0.172 1.523 633
GiH s 0.179 1.528 589 (d)
oan@— 8—O—©— OCeH:: 26.4 43.9 0.121 1.530 589 (e)
05H1,®— g-s CN 25.3 37.0 0.197 1.592 589 (e)

") Tr=0.965.

(a) R. G. Horn, J. de Phys. 1978, 39, 105; or Ref. [19].

(b) M. M. M. Abdoh, S. N. C. Shivaprakash, J. S. Prasad, J. Chem. Phys. 1982, 77, 2570.

(c) L. H. Ibrahim, W. Haase, Mol. Cryst. Liq. Cryst. 1981, 66, 189.

(d) Reference [18].

(e) L. H. Ibrahim, W. Haase, J. de Phys. 1979, 40, 191.
(f) D. A. Dunmur, A. E. Tomes, Mol. Cryst. Liq. Cryst. 1983, 97, 241.

(g) M. Mitra, B. Majumdar, R. Paul, S. Paul, Mol. Cryst. Lig. Cryst. 1990, 180B, 187.

(h) I. Haller, H. A. Huggins, M. J. Freiser, Mol. Cryst. Lig. Cryst. 1972, 16, 53.
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fit refractive index data to a mean field
expression for the order parameter using a
numerical procedure [6]. The refractive in-
dices also provide a possible route to deter-
mining molecular polarizabilities, and de-
sign of molecules with specifically high or
low polarizability is important for particu-
lar applications.

3.3 Optical Absorption
and Linear Dichroism

The attenuation of the intensity of a beam
of light on passing through an absorbing me-
dium can be measured by the absorption co-
efficient, which is the imaginary part of the
refractive index. A more usual measure is
the optical absorbance (A) or molar extinc-
tion coefficient & which is defined in terms
of the Beer—Lambert law as:

10g10(10/1)=8Cl (14)

where C is the concentration in moles per
m?, [ is the optical path length in the sam-
ple, and I/I is the ratio of the incident in-
tensity I, to the transmitted intensity 1. The
extinction coefficient is a function of the fre-
quency of the light, and integrating over the
absorption band i(w; +I,/2), centered on
the frequency of maximum absorption ;
gives the optical absorbance as:

/2

log,10 T e@do (15)

A=
2t _F

Finally for a narrow absorption, the absorp-
tion coefficient, k, can be related to the mo-
lar extinction coefficient by:

6ce(w) Clog, 10

16
27”1(Di ( )

k(w)=

where c is the velocity of light and # is the
real part of the refractive index. The real and

imaginary parts of the refractive index are
related through a Kramers—Kronig relation,
such that:

n(w)—1

k(@)= 2J v

dw (17)

Equations (14)—(17) apply to isotropic me-
dia. In an orientationally ordered material
the extinction coefficient becomes depen-
dent on the angle between the alighment ax-
is and the polarization direction of the inci-
dent light, and has the characteristics of a
second rank tensor. At a microscopic level,
the optical absorption depends on the angle
between the molecular transition dipole mo-
ment Y, for the particular absorption band,
and the electric field of the light wave. Re-
stricting attention to uniaxial systems, an ef-
fective order parameter (S,;,) for optical ab-
sorption can be defined as:

_A—-A
A +24; (18)
in which A, and A | are the extinction coef-
ficients for light polarized parallel or per-
pendicular to the director; the difference
A,—A, is known as the linear dichroism.
These extinction coefficients can be related
to the transition dipole moments using the
general result Eq. (45) of Sec. 1 of this chap-
ter, such that:

A= AO+B{ [(u»n (<ﬂi>%+<ui)3,,)}

+3D ((u»%—(ul-)%z)} (19)

Ap=Ag— B{ [(uon ((u,»>%+<u,»>%n)}

=D ((m)%—(u»%)} (20)
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where AO=% (A;+24,) is the mean opti-

cal absorbance or the optical absorbance of
the isotropic fluid. The factor B contains
various fundamental constants, and y;, t;,,
and 1, are components of the transition mo-
ment along the principal axes of the mole-
cule. Using the angles defined in Fig. 3
a simple manipulation of Egs. (18)—(20)
leads to the result [21]:

Sop = % (30052 ﬁ—l) Su
—%(sm2 B cos2a) D, 1)

where S, and D, are order parameters for
the transition moment. A more complex
result can be derived for biaxial samples
using Eq. (47) of Sec. 1 of this chapter. S,
defined above is the order parameter for an
optically absorbing mesogen; often the
chromophore in a liquid crystal is not the
mesogen but a solute dye molecule, which
may or may not be mesogenic itself. There
can still be dichroism because the liquid
crystal host orders the dye molecule, but the
order parameter of the dye may be substan-
tially different from that of the host. In a
mixture, the order parameters for the chro-
mophore can in principle be related to the
order parameters of the host material using
the mean field theory of mixtures [23, 24].

It is sometimes useful to express the
dichroism in terms of the dichroic ratio

Figure 3. Orientation of the transition moment with
respect to molecular axes for a dichroic mesogen [22].

R=A\/A . Assuming that there is no local
biaxial order, the order parameter can be
written in terms of R and the angle between
the transition dipole and the ordered axis of
the absorbing molecule:

_ 1+S(30052ﬁ—l)
- 1—%S(3coszﬂ—l)

(22)

For the special cases where the transition di-
pole is parallel or perpendicular to the mo-
lecular axis, the relationships between the
dichroic ratio and the order parameter re-
duce to simple forms:

—noy_ 1+2S8
R(B=09="1%
R(B=909=-1=5 (23)
1+§S

A particularly uvseful aspect of dichroic
measurements is the chance to probe orien-
tational order using more than one electron-
ic transition in a molecule. Thus optical or-
der parameters can be determined for differ-
ent absorption bands, and if the transition
moment directions are known, it is possible
to determine both order parameters S and D.
If it is assumed that there is a relationship
between the uniaxial and biaxial order pa-
rameters, as given in Fig. 5 of Sec. 1 in this
chapter, then it is possible to obtain both or-
der parameters from the polarized spectra
from a single absorption band [25]. This
method has been applied [26] to the deter-
mination of order parameters of rigid aro-
matic probes, such as azulene, phenan-
threne, and anthracene and related com-
pounds. Dichroism measurements on im-
purity molecules in liquid crystal solvents
have also been used [27, 28] to study inter-
molecular interactions, and their influence
on electronic absorption bands. Polarization
effects of the type described above for sim-
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ple optical absorption spectroscopy can be
observed and interpreted in a similar man-
ner for many other types of spectroscopy
such as Raman scattering [29] and reso-
nance Raman scattering [30].

The Kramers-Kronig relationship be-
tween the real and imaginary parts of the re-
fractive index shows that materials having
a strong electronic absorption will tend to
have a high refractive index. Conjugated
mesogens or polarizable mesogens will
therefore have relatively large refractive in-
dices, and the birefringence will be deter-
mined by the polarization of the electronic
absorptions. Some typical values for refrac-
tive indices of a range of different liquid
crystals are given in Table 2. Materials with
electronic absorptions in the UV at wave-
lengths less than 200 nm such as substitut-
ed bicyclohexanes will have small refrac-
tive indices and usually small birefringenc-
es. Changes in refractive indices with wave-
length are also determined by the electron-
ic absorptions for particular mesogens, and
a polarized UV/visible spectrum for a stan-
dard liquid crystal is illustrated in Fig. 4.
The dispersion in the corresponding refrac-
tive indices can be readily obtained from the
following equations based on Drude’s the-
ory of optical dispersion:

-1
ne=1+n08+ble[%—)’_12j +
1

-1

-1
1
n, =1+n00+b10(%—?) +
1

-1
1 1
bzo(g—?] +... (24)

Measured refractive indices for 5CB fitted
to these equations are given in Fig.5 [31].
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Figure 4. UV/visible spectrum of a mesogen (5CB).

Refractive Index
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Figure 5. Fitted dispersion of refractive indices for
5CB.

3.4 Refractive Indices
and Liquid Crystal Phase
Structure

In Eqs. (9)—(11) the electronic polarizabil-
ity is independent of temperature, so the
temperature dependence of refractive indi-
ces is determined primarily by the order pa-
rameter, and to a lesser extent by changes in
the density: the latter may be important at
phase transitions. The variation of refractive
indices of n-pentyloxyphenyl trans-4-n-
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octylcyclohexanoate with temperature is
given in Fig. 6, where the effect of phase
changes is clearly seen. The changes most-
1y reflect changes in the order parameter at
the transitions.

Thin films of oriented liquid crystals can
act as optical wave guides, and examination
of the eigenmodes of thin liquid crystal
films can be used to obtain values for the
real and imaginary parts of the refractive in-
dices, as well as giving information on the
director configuration in thin films [32]. The
liquid crystal film is contained between two
metallized (silver) reflecting surfaces, and
the reflectivity is measured as a function of
the angle and polarization of incident mono-
chromatic light. The intensities of the re-
flected beam for light polarized in the plane
of incidence (p) and perpendicular to the
plane of incidence (s) are measured, and can
be fitted to a model for the refractive in-
dices, film thickness and director configu-
ration. An example of experimental and fit-
ted results is shown in Fig. 7 for the SmA
phase of a commercial liquid crystal mix-
ture Merck (UK) SCE3 [33].

A significant advance provided by guid-
ed mode experiments is the ability to meas-
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Figure 6. Refractive indices against temperature, in-
cluding phase transitions [31]
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Figure 7. Reflectivity as a function of angle with fit-
ted function for SCE3 at 72.8 °C (SmA); fitting pa-
rameters £ =2.760 and £, =2.208.

ure not only the optical parameters of a lig-
uid crystal film, but also the director con-
figuration in complex geometries, such as
the chevron structure in a SmC phase (see
Fig. 8). The analysis of the optical response
of complex liquid crystal structures is most
conveniently achieved using the methods
of matrix optics. There are a number of var-
iants which can be used, depending on the
particular problem, but the basic method is
to represent an optical element as a matrix,
which acts on the incident light, represent-
ed as a column vector, to give a resultant
vector characteristic of the transmitted light.
The approach is particularly suited to the
geometries encountered in liquid crystal
systems, since a complex optical structure
can be split up into a series of elements each
having its own characteristic matrix. With-
in each element it is assumed that the direc-
tor is uniform, so the optical properties can
be simply described in terms of principal re-
fractive indices, the absorption coefficients
for absorbing materials and the orientation
of the optical indicatrix. The resultant re-
sponse of the complex structure is then giv-
en by successive multiplication of the ma-
trices for each element. The simplest meth-
od is that due to Jones, where the light wave
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is represented as a 2x1 column vector con-
sisting of the electric field components E,
and E, in a plane perpendicular to the prop-
agation direction z. Thus the transmitted
wave (E, E,,) through a birefringent ele-
ment of thickness d and principal refractive
indices n, and n, making an angle of ¢ with
the x axis can be written as:

E, cos¢ —sino
Ey “[sin  cosa

|:e—27rined//1 0 }
0 e—27rinnd//l
cosar  sine || Ej;
[— sina  cos a} [Eiy}
or
E, = R“"BRE, 25)

where the incident wave is represented by
Ei, E;,, R is the rotation matrix and the
matrix B represents the birefringent ele-
ment. Extra elements such as polarizers
and other birefringent elements can be in-
cluded as appropriate matrix multipliers,
and the transmitted light intensity is given
by I=E2+EZ,.

As an example of the application of the
Jones matrices, the director configuration in
a thin liquid crystal film of a SmC material
has been investigated [34] by measuring
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the transmission of polarized light as a func-
tion of wavelength. Knowing the refractive
indices of the material, the experimental
results can be fitted to a model for the di-
rector configuration, as illustrated in the
Fig. 8.

Another analytical method which had
been extensively applied to liquid crystal
structures was developed by Berreman [35].
It is based on a 4x4 matrix representation of
optical elements [36], where the incident
and transmitted light are described by a 4x1
column vector consisting of components of
both the electric and magnetic field asso-
ciated with the electromagnetic wave.

A widely used technique to study the
properties of thin films is ellipsometry, and
it has been used to investigate the structure
of free-standing films of smectic liquid
crystals consisting of only a few layers
[37]. The method involves measuring the
polarization characteristics of a transmitted
or reflected beam of monochromatic light
for different angles of incidence. Writing
the phase difference between the s- and
p-polarizations of the transmitted beam as
A= ¢, ¢, the value of A will depend on the
integrated optical path difference across the
smectic layers for light of the two polariza-
tions. The technique has been used to probe
the structure of ferroelectric and antiferro-
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700 Figure 8. Fitted transmission against
wavelength for a chevron structure {34].
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Figure 9. Measured optical path difference for three
and four layer smectic structures of antiferroelectric,
ferrielectric and ferroelectric SmC phases [37]. Bot-
tom figure indicates angle of incidence for A, and A_
measurements.

electric smectic liquid crystals. For smectic
films with alternating tilt directions, as in
antiferroelectric or ferrielectric chiral SmC
phases, the optical path difference will dif-
fer for odd or even numbers of layers. This
isillustrated in Fig. 9 for a 3 and 4 layer film
of MHPOBC, and the observed values for A
measured in the antiferroelectric phase for
2 angles of incidence are consistent with the
proposed structure for antiferroelectric
phases.

3.5 Optics of Helicoidal
Liquid Crystal Structures

In simple fluids of chiral molecules (mole-
cules having structures such that mirror
images are not superposable) the molecu-
lar chirality can be identified through the
associated optical activity (i.e. the rotation
of the plane of incident plane polarized
light). If the light is of a frequency that cor-
responds with an electronic or vibrational
absorption, then the fluid can exhibit diffe-
rential absorption for left and right circular-
ly polarized light, and the transmitted light
is elliptically polarized. Optical activity can
also be observed in differential scattering of
left or right circularly polarized light. Chi-
ral liquid crystals as well as exhibiting op-
tical activity have a number of characteris-
tic chiral properties, the most important
of which is a tendency for the phases to de-
velop helicoidal structures. Thus optical ef-
fects due to chirality in liquid crystals can
be due to molecular chirality or a conse-
quence of the helicoidal structure. This may
seem to be an unnecessary distinction, since
the helicoidal structures of chiral liquid
crystal phases are a result of chiral inter-
actions between molecules. However there
is a difference when it comes to calculat-
ing the optical response of chiral liquid crys-
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tals, which can usually be modelled by
twisted layers of linearly birefringent mate-
rial; the intrinsic molecular optical activity
of a liquid crystal is normally neglected in
modelling the optical properties of chiral
liquid crystals. For example the specific ro-
tation measured in isotropic solution of a
typical liquid crystal material such as CE6
(CpH,,0CcH,CO0CH,CH,CH(CH;)C,Hs)
is 3-cm™!, while the optical rotation of an
aligned film of the chiral nematic phase of
such a material, which arises primarily from
the helicoidal structure, is around 10* - cm™!,

One optical feature of helicoidal struc-
tures is the ability to rotate the plane of in-
cident polarized light. Since most of the
characteristic optical properties of chiral
liquid crystals result from the helicoidal
structure, it is necessary to understand the
origin of the chiral interactions responsible
for the twisted structures. The continuum
theory of liquid crystals is based on the
Frank—Oseen approach to curvature elastic-
ity in anisotropic fluids. It is assumed that
the free energy is a quadratic function of cur-
vature elastic strain, and for positive elastic
constants the equilibrium state in the ab-
sence of surface or external forces is one of
zero deformation with a uniform, parallel
director. If a term linear in the twist strain
is permitted, then spontaneously twisted
structures can result, characterized by a
pitch p, or wave-vector q=27 p i, where i
is the axis of the helicoidal structure. For the
simplest case of a nematic, the twist elastic
free energy density can be written as:

g=—k,(n-Vxn)+kypm-Vxn)? (26)

and the pitch of the corresponding chiral ne-
matic is given by p~' =k,/2mk,,. The opti-
cal properties of such twisted structures
have been determined using a model of
twisted layers of linearly birefringent mate-
rial, which predicts a variety of optical re-
sponse depending on the value of pAn in

comparison with the wavelength A. For long
pitch materials such that p An > 1, the struc-
ture behaves as a rotator, and linear polar-
ized modes rotate with the helix: this is the
mode utilized in twisted nematic displays.
For shorter pitches the optical response is
more complicated, but analytical results can
be obtained for normal incidence, leading to
the de Vries equation [38] for the optical ro-
tation per unit length p=¢/d: 27)

po (=1 2(igf I_HZ
ap\ng+n; ) \ 2 %o
This equation predicts that the optical
rotation diverges at a critical wavelength
A,=np. The variation of p with wavelength
is illustrated schematically in Fig. 10.
However the de Vries equation is not val-
id in the region of A, which corresponds to
atotal reflection of circularly polarized light
having the same sense as the helical pitch.
This is often referred to as Bragg reflection,
by analogy with X-ray diffraction, but only
first order reflections are allowed for nor-
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Figure 10. Variation of p with A/um according to
Eqgn. 27.



228 3 Optical Properties

mal incidence. The band width for total re-
flection centered on a wavelength of A, is
AA=p An, and the sign of the optical rota-
tion reverses on crossing the band at 4,,. It
is observed that the wavelength of reflected
light varies as a function of the angle of in-
cidence, but an analytical solution of the op-
tic response for this situation is not possible.
Away from normal incidence, all orders of
reflection are permissible [39], but an ap-
proximate result for the angular dependence
of the wavelength of reflected light is

A(6) = A(0)cos (sin_l Q) (28)
n

From the above it is clear that the optical re-
sponse of helicoidal structures of liquid
crystal molecules depends on the pitch, and
in order to relate these optical properties to
molecular structures, the dependence of pitch
on molecular structure must be considered.

Chiral liquid crystal phases readily form
in mixtures of chiral and nonchiral materi-
als, and for mixtures of a chiral dopant and
a nonchiral host it is convenient to define a
twisting power b, which is a measure of the
pitch induced per unit concentration of chi-
ral dopant:

(29)

The twist induced by different molecular
species can be qualitatively related to the
molecular structure of the chiral species
[40]. The twist induced in a nonchiral lig-
uid crystal solvent by a chiral dopant also
depends on the nature of the solvent, and it
has been proposed that chiral dopants can
preferentially promote chiral conformations
of the solvent molecules [41]. This effect
has also been observed in isotropic solu-
tions, where an enhanced optical rotation in
solutions of a chiral biaryl in a cyanobiph-
enyl solvent was attributed [42] to an induc-
tion of chirality via preferential interactions

between solute and solvent conformations
of the same chirality. Attempts have been
made to relate the twisting power to some
molecular measure of chirality based on a
variety of geometric indices [43], but with
only limited success.

Chiral interactions in the isotropic phase
of liquid crystals are clearly seen in the pre-
transitional increase in optical activity ob-
served at the isotropic to chiral nematic or
chiral smectic phase transition. This was
first observed by Cheng and Meyer [44] and
explained by them in terms of fluctuations
in the off-diagonal elements of the correla-
tion function for fluctuations in the order-
ing matrix [45]. There are five fluctuation
modes which can contribute to the pretran-
sitional optical activity, and the experimen-
tally observed behaviour depends on the rel-
ative amplitudes of these modes and cou-
pling between them [46]. For some systems
of high chirality there is areversal in the sign
of the pretransitional optical activity which
has been attributed to mode-coupling; sim-
ilar results have been obtained in the pre-
transitional region of smectic phases [47].
Scattering of circularly polarized light has
also been used [46] to probe different chiral
fluctuation modes, and by selection of com-
binations of incident right or left and scat-
tered left or right circularly polarized light
itis possible to identify scattering from three
of the five individual modes.

The imaginary part of the complex re-
fractive indices for left and right circularly
polarized light relates to circular dichroism,
that is differential absorption for light of dif-
ferent circular polarizations. It is treated in
a similar manner to linear dichroism, except
that the definition of principal components
follows a different convention. For linear
birefringence and dichroism the principal
values of the complex refractive index re-
late to the electric field polarization direc-
tion which is transverse to the propagation



direction (TE); principal components of the
circular dichroism tensor are defined for the
propagation direction. Thus components of
the transition moments will contribute dif-
ferently to corresponding principal values
of the linear dichroism and circular dichro-
ism tensors [48].

The circular dichroism (CD) AAcp is de-
fined as the difference in the optical absorp-
tion for left and right circularly polarized
light, and for small values of the dichroism
this gives rise to a corresponding ellipticity
y for transmitted plane polarized light:

AAcp =k — k; (30)

_(h-k)od

2¢ e

v
where o is the frequency of the light in ra-
dians/sec, d is the pathlength and c the ve-
locity of light.

The use of CD as a probe of liquid crys-
talline properties has been rather limited.
A helicoidal structure will induce circular
dichroism at an absorption band of a nonchi-
ral chromophore, and the magnitude of the
induced CD absorption depends on the pitch
of the helix, the sign of the CD changing if
pitch inversion occurs. This technique has
been used to investigate phase transitions
between ferrielectric, ferroelectric and anti-
ferroelectric smectic C* states of MHPOBC
(CgH,,0CcH,COOCsH,COOCH(CH;)CgH,3)
[49]. Spectra were recorded in the visible
for a dissolved nonchiral dye molecule, and
a small induced CD was detected in the UV
originating in the intrinsic absorption of
MHPOBC. A change in sign of the CD of
the dye molecule was observed at the phase
transition between ferroelectric and ferri-
electric states. Measurements were made
on 100 um cells homeotropically aligned
along the helix axis, to avoid complications
from linear birefringence or dichroism ef-
fects.
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The purpose of this Chapter is to describe
the dielectric properties of liquid crystals,
and relate them to the relevant molecular
properties. In order to do this, account must
be taken of the orientational order of liquid
crystal molecules, their number density and
any interactions between molecules which
influence molecular properties. Dielectric
properties measure the response of a charge-
free system to an applied electric field, and
are a probe of molecular polarizability and
dipole moment. Interactions between di-
poles are of long range, and cannot be
discounted in the molecular interpretation
of the dielectric properties of condensed
fluids, and so the theories for these proper-
ties are more complicated than for magnet-
ic or optical properties. The dielectric be-
havior of liquid crystals reflects the collec-
tive response of mesogens as well as their
molecular properties, and there is a coupling
between the macroscopic polarization and
the molecular response through the internal
electric field. Consequently, the molecular
description of the dielectric properties of
liquid crystals phases requires the specifi-
cation of the internal electric field in aniso-
tropic media which is difficult.

4.1 Dielectric Response
of Isotropic Fluids

The various factors which influence the di-
electric properties of a liquid crystal can be
identified by recalling the results for iso-
tropic fluids. The Debye equation (1) for an
isotropic fluid relates the permittivity to the
mean polarizability (&) and molecular di-
pole moment ():

€-1=

2
NFh[a+ U F} ~
&

kT

where F and # are reaction field and cavity
field factors which account for the field de-
pendent interaction of a molecule with its
environment, and N is the number density.
Molecular contributions to the permittivity
are approximately additive, since (€-1) is
proportional to N, but the internal field fac-
tors for the reaction field (F) and cavity field
(h) are also density dependent. For isotrop-
ic fluids, the internal field factors are given
by:
1 _ 2(8 - 1)

F=l-afy and f = Fer1)
3¢

T Qe+ @
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where a is the radius of the spherical cavity
which accommodates the molecule. Using
the Lorenz-Lorentz equation for the iso-
tropic polarizability, Eq. (8) of Sec. 3 of this
chapter gives for the reaction field factor:

(28 + 1)(n +2)

3
3e+n%) 3)

Specific pairwise dipole—dipole interac-
tions can be accounted for by introducing
the Kirkwood correlation factor g,;, such
that the mean square dipole moment is re-
placed by an effective mean square moment
defined by:

Hu gffective= 81 luz “4)

and this correlation factor g, can be related
to the spatial dipole correlation function
G(r) in the fluid:

g =1+V'[G(r)dr and

(1(0) (r)

Gi(r) =
{0 =100 u(0))

(5)

The Kirkwood —Frohlich equation incorpo-
rates this factor, and enables the mean
square effective dipole moment to be de-
duced from measurements of the electric
permittivity, refractive index and number
density of a fluid:

(e-n®)Qe+n?)

— Ng 'u2 6
e(n® +2)? ©

9y kg T

The electric permittivity determines the po-
larization (dipole moment per unit volume)
induced in a material by an electric field. If
the applied field varies with time, then the
frequency dependence of the permittivity is
an additional property of the material. A
complication with any time-dependent re-
sponse is that it may not be in-phase with
the applied field. Thus to describe the fre-
quency-dependent dielectric response of a

material, the amplitude and phase of the in-
duced polarization must be measured. A
convenient way of representing phase and
amplitude is through complex notation, so
that € (real) measures the in-phase re-
sponse, and £’ (imaginary) measures the 90°
out-of-phase response:

e¥(w)=€(w)-ie" (W) (N

and the phase angle is tan™' (¢”/¢’). The
effective response of a molecule to an alter-
nating field of frequency @, assuming a sin-
gle molecular dipole relaxation, can be de-
scribed through the complex permittivity as:

.1 NU?
*(0)—1=(1+ 2= 8
e*(w) (I+iw7) 3egka T (8)
which gives:
! —-1=J1
g (w) [ +0*T ] 380kB
14 —1 ]V’u2
=ot[1+0??| = 9
£ (w) an'[+a)r] 3eokn T 9)

The time 7 is the relaxation time for dipole
reorientation in an electric field of frequen-
cy o (radians s™'). For real systems there
may be a number of contributions to the
electric permittivity, each relaxing at a dif-
ferent frequency, for example due to inter-
nal dipole motion in flexible molecules or
collective dipole motion. If these contribu-
tions to the electric permittivity are at suf-
ficiently different frequencies, they can be
separated in the dielectric spectrum, and it
is possible to apply Eq. (9) to each relaxa-
tion process. At low frequencies (w— 0),

the orientation polarization contribution to
2

the permittivity is Nu

&g kg
internal field effects, while at high frequen-
cies (@ — o), the molecular dipoles do not
rotate fast enough to contribute to the di-
electric response. More generally the real

, neglecting an
T g g any



4.1
and imaginary parts of the permittivity can
be expressed as:

£ (@)~ &/ (o) = 1E Q= E )]

[1+iwT]
, s LEO) —€(=)]
g(w)-¢ (W)zm'ﬂ] ]
’ 0)— (oo
£"(w)= m[[i ;2:2]( ) (10)
NEE 0y — (e
where Se kT =[£’(0) - &'(=0)].

These equations, due to Debye, can be used
to describe any relaxation process in a ma-
terial, but in such cases the frequencies @ =0
and @ =< refer to frequencies below and
above the relaxation frequency w,=7", as
illustrated in Fig. 1.

If the variable @7 is eliminated from

Eq. (10), we obtain:
2 1 ’ 2
£’ (w) +{£ (w)—E[e O)+¢ (oo)]}
= %[8’(0) — /()] (11)

which is the equation of a circle of radius

218(0)+ () centered on the point €” (@)

=0, & (w)= %[8(0) +g(o0). This represen-

S (e,€)

0.01 01 1 10 100

log (w,)

Figure 1. Schematic plot of the real and imaginary
parts of the complex permittivity as a function of rel-
ative frequency Wy =0T
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€ £ — 80

Figure 2. Cole—Cole plot of the real and imaginary
parts of the permittivity.

tation of the real and imaginary parts of the
electric permittivity is known as a Cole—
Cole plot, and is illustrated in Fig. 2.

In plotting experimental data it is some-
times more convenient to use the Debye—
Pellat equations which are obtained by re-
arranging Eq. (10) thus:

(@)= &'y + E©)
&(w)=¢€(0)+ g

gw=£0)-wte’ (v (12)

since these provide a simple way to deter-
mine the low £(0) and high €(e) frequen-
cy contributions to the real part of the per-
mittivity.

The measured frequency dependences of
£”(w) and €' (w) in real fluids do not always
fit the Debye —Pellat equations, and many
methods [1] have been proposed to analyse
skewed or displaced Cole—Cole plots.
Debye’s theory of dipole relaxation assumes
that rotational motion can be described in
terms of a single relaxation time. In a real
system, fluctuations in the local structure of
a molecule or its environment may result in
a distribution of relaxation times about the
Debye value, and such a situation can be de-
scribed by a modification to Eq. (10)

[€(0)— ()]

[1+(im)1‘“] (13

E* (W) —€'(0) =

where « is a parameter introduced by Cole
and Cole [2]. The effect of « is to produce
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a semicircular Cole—Cole plot, the center
of which is depressed below the abscissa.
Asymmetric or skewed plots of £”(w)
against £ (@) can sometimes be fitted by the
Cole~-Davidson equation:

£ ()¢ = [£O=EC) (14)
[1+(w7)

where B is another parameter which is a
measure of an asymmetric distribution of re-
laxation times. Another empirical function-
al form which is sometimes used to describe
a non-Debye like relaxation is due to Fuoss
and Kirkwood. This function, Eq. (15),
gives a symmetric Cole—Cole plot, but de-
pressed with respect to the result for a sin-
gle relaxation: (& here is not the same as the
o parameter in Eq. (13))

()= %(x(e(O) — &(c0))secha (Inw7) (15)

In some isotropic liquids, and quite gener-
ally in polar liquid crystals, the plot of £”(w)
or £ (w) against frequency shows evidence
of two or more separate relaxation times. In
some circumstances these may be well sep-
arated in frequency giving distinct Cole—
Cole arcs, but more usually they overlap to
give a composite Cole—Cole arc. The sim-
plest analysis of such measurements is to as-
sume that the relaxation processes contrib-
ute additively to the permittivity so that the
complex permittivity can be written:

E¥(W)—€'(0) = Z[1+ o ] (16)

where x; is a weighting factor for each re-
laxauon centred at frequency @;=17;". Us-
ing this, nonsemi-circular Cole — Cole plots
can be analysed in terms of a sum of contri-
butions (see Fig. 3).

In deriving the macroscopic equations
from the microscopic result, Eq. (8) the ef-
fect of the environment on a rotating molec-

Figure 3. Cole—Cole plot of the perpendicular com-
ponent of the permittivity for the nematic phase of
4-heptyl-4-cyanobiphenyl [3].

ular dipole has been neglected. This does not
invalidate the Debye—Pellat equations or
Cole-Cole plot, but requires a different
interpretation of the relaxation time. Thus
;= 1}‘1 is no longer the angular velocity of
a rotating dipole, but is a macroscopic re-
laxation frequency. For an isotropic fluid an
approximate relationship between the mac-
roscopic and microscopic relaxation times
is [4]:

3e(0)

26(0) + £() Tmicroscopic  (17)

Tmacroscopic =
but this result is not applicable to liquid
crystals.

If the rotating molecule is assumed to be
rigid and axially symmetric, then the dipole
will lie along the symmetry axis, and the re-
orientation of the dipole in an electric field
will be governed by the rotational motion of
the molecule about an axis perpendicular to
the symmetry axis. This in turn can be re-
lated to a rotational diffusion constant D :

Tmolecutar = (2D ) ' =1Qkg TT;)™  (18)

where 7 is the relaxation time for the angu-
lar momentum about the short axis, and [ is
the moment of inertia. Assuming an isotrop-
ic distribution of angular momenta, Debye
showed that 7; could be simply related to the
moment of inertia, an effective molecular
radius (a) and a microscopic viscosity (77),

giving:
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T _4rn a
1 —_—
molecular kB T

(19)

Various extensions of this to other molecu-
lar shapes have been reported [5].

In the above discussion of the frequency
dependent permittivity, the analysis has
been based on either the single particle ro-
tational diffusion model of Debye, or em-
pirical extensions of this model. A more
general approach can be developed in terms
of time correlation functions [6], which in
turn have to be interpreted in terms of a suit-
able molecular model. While using the cor-
relation function approach does not simpli-
fy the analysis, it is useful, since experimen-
tal correlation functions can be compared
with those deduced from approximate the-
ories, and perhaps more usefully with the re-
sults of molecular dynamics simulations.
Since the use of correlation functions will
be mentioned in the context of liquid crys-
tals, they will be briefly introduced here.
The dipole—dipole time correlation func-
tion C(r) is related to the frequency depen-
dent permittivity through a Laplace trans-
form such that:

£* (@) —n (2€’(w) +n?)e’(0)
£(0)—n? (2g’(0)+n2)e'(w)

=1-iw [C()e'”" dt (20)
0

where C(¢) is the dipole time correlation
function defined by:

(pOu@) .
CO=1 10 o) b

4.2 Dielectric Properties
of Anisotropic Fluids

In an orientationally ordered fluid the
electric permittivity becomes a second rank

tensor €,4, and an electric susceptibility can
be defined which relates the induced pola-
rization P to the applied electric field E:

by = 80(8aﬁ - 60:[3) Eﬁ

electric
o E,B

=& X op (22)

Thus the number of independent compo-
nents of the permittivity tensor will depend
on the symmetry of the liquid crystal phase.
The frequency dependence of the permittiv-
ity is described in terms of real and imagi-
nary parts, and these also will be tensor
quantities. Apart from complications of an-
isotropic internal fields, the static or low fre-
quency part of the permittivity tensor can be
related to the molecular polarizability and
dipole moment averaged over the appropri-
ate orientational distribution functions.

4.2.1 The Electric Permittivity
at Low Frequencies:
The Static Case

4.2.1.1 Nematic Phase

In this section we wish to consider all the
possible contributions to the electric permit-
tivity of liquid crystals, regardless of the
time-scale of the observation. Convention-
ally this permittivity is the static dielectric
constant (i.e. it measures the response of a
system to a d.c. electric field) in practice ex-
periments are usually conducted with low
frequency a.c. fields to avoid conduction
and space charge effects. For isotropic di-
polar fluids of small molecules, the permit-
tivity is effectively independent of frequen-
cy below 100 MHz, but for liquid crystals it
may be necessary to go below 1kHz to
measure the static permittivity; polymer lig-
uid crystals can have relaxation processes at
very low frequencies.
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The electric susceptibility for anisotrop-
ic materials is a second rank tensor, and we
can use the general results of Sec. 1 of this
chapter. Firstly we will only consider the an-
isotropic part of the permittivity:

X o= Xop =3 o Bp (23)
The principal components of this can be
evaluated in terms of order parameters and
molecular properties as given in Eq. (47) of
Sec. 1 of this chapter. All that remains is to
evaluate the components of the molecular

susceptibility tensor k537", This contains
contributions from (1) the dipole induced by

the internal electric field E®™, and (2) the
orientation polarization arising from the
partial alignment of dipoles by the directing
field E““©, Thus in molecular axes the prin-
cipal components of the microscopic electric
susceptibility tensor will be obtained from:

K.El_electric) Ei = q Egint) + 1 (2 4)

If a molecule is freely rotating then the av-
erage dipole moment along any axis will be
zero. The effect of an electric field is to
break the + symmetry of the axis, and the
value of y; is the average over the +i and —i
directions weighted by the Boltzmann ener-
gy associated with the directing electric
field, so that:

(din) _ . p(din)
_ kg T kg T (25
Hi= ‘
exp— up + i, E (" rexp—| + 1 E (%0
ks T ks T

where y ;=

N : (dlr)

B=Sr

—H,;. Assuming that y; E (“V< ky T, expanding the exponentials gives:

(26)

and using this in Eq. (24) along with the results for E™ and E“” obtained for isotropic
liquids gives:

2
K.glelectm) Fh ail.+/"i_F (27)
kT

This can be substituted into Eq. (47) of Sec. 1 to obtain the anisotropic part of the electric
susceptibility tensor. The isotropic part of )((elec"‘c) is the result obtained for isotropic fluids:

i } (28)

l Z(electric) N F h
n 3kB

&

W

so the final result for the principal components of the permittivity tensor can be obtained
from Egs. (27) of this section and (47) of Sec. 1 to give:

(electnc)_

x —1=851NFh{&+%a1S+%a2D
(”)

3k T[,u (1+2S)+uy(1 S—-Dy+pu2(1- S+D)]} (29a)
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yei=g | _1= g5 NFh {a— %al (S+P)— éa2 (D+C)

i

+ I
6kg T

yO=g —1=g5! NFh {a—;al (S—P)—éoz2 (D-C)

(L)

(29b)

[2#5(1—S—P)+u§,(2+S+P+D+C)+u§(2+S+P—D—C)]}

(29¢)

F
+g1[2u§(1—S+P)+u§(2+S—P+D—C)+u§(2+S—P—D+C)]}

6kg T

These are the Maier and Meier equations [7]
for the low frequency components of the
permittivity extended [8] to include all
orientational order parameters. They pre-
dict that the mean value of the permittivity

£= %(6‘" +&,-+ &) should be independent

of the orientational order, and apart from
changes in density it is expected to be con-
tinnous through all liquid crystal phase
changes. This prediction is not always con-
firmed by experiment, and for polar meso-
gens there are often detectable changes in €
at phase transitions, including those to the
isotropic liquid.

A simplified form of Eq. (29) may be
used to write down the permittivity aniso-
tropy of a uniaxial liquid crystal consisting
of uniaxial molecules having an off-axis di-
pole which makes an angle of 3 with the
principal molecular axis (see Fig. 4):

2k T

2
Ag = NZFS [Aa +H F (30052 B- l)} (30)
0

Figure 4. Schematic of a mesogen with an off-axis di-
pole moment making an angle of 8 with the molecu-
lar long axis.

For values of B3 less than 54.7°, the dipolar
term is positive, while for angles greater
than this it becomes negative, and may re-
sult in an overall negative dielectric aniso-
tropy. For a particular combination of mo-
lecular properties, the polarisability aniso-
tropy and the dipolar terms in Eq. (30) may
cancel at a particular temperature. This has
been observed in certain fluorinated cyclo-
hexyl ethanyl biphenyls [9], which change
the sign of their anisotropy from negative at
low temperatures to positive at high temper-
atures. There is, however, a basic inconsis-
tency with the model described by Eq. (30),
since any molecule with an off-axis dipole
is necessarily biaxial; rotation about the mo-
lecular long axis may result in the biaxial
order parameter D averaging to zero.
Dielectric measurements on liquid crys-
tal phases probe the dipole organization of
molecules, and changes in the permittivity
components as a liquid crystal undergoes
transitions from nematic to various smectic
phases will primarily reflect changes in or-
ientational order and symmetry changes.
Different degrees of translational order will
only influence the permittivity components
indirectly through macroscopic internal
field corrections and through short range di-
pole—dipole interactions. The effect of
macroscopic anisotropy on the dielectric
properties of a material has been calculated
for the model of a polarized sphere im-
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mersed in a dielectric continuum, with the
result: [10]
_ (w3

(ei -~ n,z) [e+2:(1- g,-)]2

& [ei + (n,-z— e,-) Q,-] &kgT

3D

where (M ?) is the mean square dipole mo-
ment of the sphere in the i-direction, and the
factor €2; accounts for the depolarization
field associated with a sphere in an aniso-
tropic medium. €2, is defined in terms of the
components of the permittivity tensor by:

(se; + 1)_] ds

SEa 1)(se,y +1)(se,, +1)
(32)

and equals 1/3 for an isotropic dielectric. To
proceed beyond Eq. (32) it is necessary to
model both the anisotropic local field act-
ing on molecules and the short range inter-
actions between molecular dipoles in the
sphere. The former depends on the long
range anisotropy in the radial distribution
function, while dipole—dipole correlations
can be described in terms of anisotropic
Kirkwood g-factors defined for different di-
rections in the sample. These are most use-
fully defined in terms of the appropriate di-
pole correlation functions as:

! oo
Qizfet_[
2 ON(

gi=1+V!G{(r)dr

(1 (0) p; (r)) -
(14:(0) p;(0)) G

where (i) refers to the parallel and perpen-
dicular directions. Thus g! and g+ measure
the extent to which the projections of mo-
lecular dipole components are correlated
along the principal axes of an anisotropic
fluid, assumed to be uniaxial in this case. If
the rotational motion of molecules was iso-
tropic, then clearly the correlation factors
along the axes would be the same. This an-
isotropic dipole correlation is illustrated in

Gi(r)=

Figure 5. Anisotropic correlation of molecular dipole
components.

Fig. 5, where the projected parallel compo-
nents of the dipoles on molecules (1) and (2)
are opposed (g} <1), while the correspond-
ing dipoles projected on to the perpendicu-
lar axis, molecules (1) and (3) are reinforc-
ing (g1).

Evaluating the mean square moment of a
sphere (Eq. (31)), and using the definition
of the correlation factor above gives the an-
isotropic version of the Kirkwood—Froh-
lich equation:

(- n )[e+.(2
s[n +2]

—_8 ] Ngl :ul>
980](3

(34)

This equation can be written as:

(gi_ng)zﬂhiigf@

kg T (33)
where h; = ¢; [8 +.Q

] is the aniso-

tropic cavity field factor, and F = 3(n +2)
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is an approximation to the anisotropic reac-
tion field factor. While some progress has
been made in describing local dipole corre-
lations in partially ordered phases, the for-
mulation of the internal electric field for a
macroscopically anisotropic dipolar fluid
remains a formidable problem. Various ap-
proximate models have been described {11 —
13], but it is difficult to assess the relative
merits of such approaches. In liquid crys-
tals, it has been proposed [14] that the long
range anisotropy in the radial distribution
function can be modelled by assuming an
ellipsoidal cavity of dimensions a, b and ¢
which depend on molecular shape. Howev-
er comparison of local field tensors calcu-
lated for a continuum model with the results
of dipole —dipole lattice sums have led to the
conclusion [15] the contribution of shape
anisotropy to the local field in anisotropic
fluids can be neglected, and the assumption
of isotropic internal field factors is justified.
Under these circumstances, Eq. (35) can be
written as more familiar Maier and Meier
equations in terms of these effective mean
square dipole moments:

g—-1=€3! NLF
— 2 F 12
. A0S+ ——— 36
{0!+3 o kBT[#eff] } (36)
e -1=¢g3' NLF

-{&—;Aa5+kBFT [ueiff]z} (37)
where the effective mean square dipole mo-
ments can be written in terms of the order
parameter and the longitudinal () and
transverse (g} components of the molecu-
lar dipole as:

[u‘éfff=‘§'1I[u%(1+28>+u%<1—5>] (38)

[uiff]2=f[u%(l—swu%(l%Sﬂ 39)

A number of studies of dipole association in
liquid crystalline systems have been report-
ed [16-18], and it is clear that the orienta-
tion of the molecular dipole with respect to
the molecular axis has a large influence on
the local dipole organisation. A mean field
theory of short range dipole —dipole corre-
lation between interacting hard ellipsoids
with embedded dipoles has been developed
[19], and this predicts that prolate ellipsoid-
al molecules (rod-like) with longitudinal di-
poles will exhibit local antiferroelectric or-
der in ordered fluids, while oblate ellipsoids
with dipoles along the shortest axis will or-
der ferroelectrically. These studies can aid
the development of new materials, for which
carefully tailored dielectric properties are
required [20], but are also of relevance in
the research on anisotropic fluids having
long range dipole organization.

As was pointed out in Sec. 1 of this chap-
ter the symmetry of the phases will deter-
mine the number of independent compo-
nents of the second rank electric permittiv-
ity; furthermore the point group symmetry
of the phase and the constituent molecules
will fix the orientational order parameters
that contribute to a microscopic expression
for the permittivity. In order to complete the
description of the low frequency or static
electric permittivity of liquid crystals, it is
necessary to consider the additional effects
of chirality, and the translational order as-
sociated with smectic phases.

The chiral nematic phase is characterized
by a helical structure, and so the electric
permittivity is biaxial, with three indepen-
dent components along the principal axes,
which are the local director axis, the he-
lix and a third orthogonal axis. Since the
pitches of chiral nematics are usually many
molecular diameters, chiral nematics are lo-
cally uniaxial, and the pitch does not affect
the symmetry or the magnitude of the per-
mittivity.
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4.2.1.2 The Smectic Phases

Experimentally there are changes in the
components of the permittivity at nemat-
ic/smectic and smectic/smectic phase tran-
sitions, as illustrated in Figs. 6 and 7.
These changes reflect the molecular reor-
ganization that takes place at transitions
between different liquid crystal phases. The
interpretation of the dielectric properties of
smectic phases can be carried out using
Eq. (34). Differences in orientational order
in smectic phases are accounted for through
the appropriate orientational order parame-
ters given in Eq. (29), while other influenc-
es of the translational smectic order will af-
fect the internal field factors and short range
dipole—dipole interactions. For strongly

4.0
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Figure 6. Dielectric permittivities for 95S showing

effect of smectic phase transitions [21].
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Figure 7. Dielectric permittivities of 4-pentyloxyl-
benzylidene-4"-heptylaniline [22].

polar mesogens dipole—dipole association
is an important contributor to the physical
properties of liquid crystal phases, and this
is particularly important in smectic phases,
where translational order can affect the di-
pole—dipole correlation factors. Dielectric
studies have been made on materials exhib-
iting a number of different SmA phases
(SmA,, SmA,, SmA), which are character-
ized by different degrees of dipole—dipole
organization [23, 24]. The effect of differ-
ent local interactions can be measured
through the dipole correlation factors g,
but evaluation of the anisotropic Kirkwood
correlation factors either requires a detailed
microscopic model for the liquid crystal, or
it can be calculated from computer simula-
tion. One model approach [25, 26] is to as-
sume perfect orientational order (i.e. S=1)
so that the molecules are constrained to be
parallel or antiparallel to the director axis.
The problem is then reduced to a two-state
model, and if the dipole moment is assumed
to be along the molecular axis, (i.e. parallel
or antiparallel to the layer normal (z-axis),
the net correlation is given by the relative
probabilities for parallel or antiparallel di-
pole organization. Thus the dipole—dipole
correlation factor can be written as:

"<,U1z #2z>

(u:)

where n is the number of neighbors. The
probabilities for parallel (+) or antiparallel
() dipole orientation are determined by the
dipole—dipole energy u (i, i) (Eq. 41),
and the average in Eq. (40) must be evalu-
ated over the microscopic structure of the
liquid crystal:

g%l')=1+ =1+n<p+—p_> 40)

12

3
Ay &y

2cos6;cosB, — 1)
sin 8, sin &, cos ¢

u(y, o) =—
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Figure 8. Dipole correlation in smectic phases.

The angles 6, and 6, are defined in Fig. 8
where the dihedral angle ¢ has been set
equal to 0. Writing the probabilities in terms
of the dipole—dipole energy:

g=1+ (42)

<€Xp—- (M) —exp— (MJ>
kg T kT
n B B

expanding the exponentials, and assuming
that u (4, 1) <kgT, gives:

<uantiparallel - uparallel>
ke T

gV=1+n (43)
and for the model depicted in Fig. 8, this can
be evaluated to give:

e (o) -1

(44
4 &y r3kB T )

gii=1-

In a smectic phase, the average separation
perpendicular to the layers (r,) is likely to
be greater than the in-plane separation, and
this results in a g{" < 1, while g{* would be
unity because the perpendicular component
of the dipole is zero. This simple model can
be extended to molecules with a molecular
dipole inclined at an angle f to the molecu-

lar alignment axis, in which case:

np? cos? ,B<3(rrz)2 - 1>

=1 45
8 Ameyrkg T (42)
.2
nu? sin® ﬂ<3(") —1>
(J-)zl_ r 46
8 8meyrikg T (46)

If (r2) is less than (#*/3), the perpendicular
dipole correlation factor will be greater than
one, indicating a preferred parallel align-
ment of dipoles in the smectic layer. This
model has been used [26] to explain the
change in sign of the dielectric anisotropy
from positive to negative on passing from
the nematic to the smectic A phase of p-hep-
tylphenylazoxy-p’-heptylbenzene.

Low frequency dielectric studies on
smectic C, F and I phases are complicated
by the intrinsic biaxiality of these phases. It
is possible to use dielectric measurements
to determine the tilt angle in SmC materials
[271, but of more interest is the direct deter-
mination of the three principal components
of the dielectric tensor, since such measure-
ments can give additional information on
the local molecular organization from Eq.
(29). The orientation of the principal axes
for tilted smectic phases is not determined
by symmetry, except that one principal
axis coincides with the C, rotation axis per-
pendicular to the tilt-plane. It is assumed
that a further principal axis lies along the tilt
direction, and this appears to be justified by
experiment; the orientation of the axes are
indicated in Fig. 9.

Most recent studies [28, 29] of the dielec-
tric properties of the SmC phase have fo-
cussed on the ferroelectric chiral smectic C
phase, because of its importance in applica-
tions. The molecular interpretation of the
principal permittivities is contained in
Egs. (27), with appropriate correlation fac-
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Figure 9. Definition of principal axes for SmC
phases.

tors to account for the tilted layered struc-
ture [25], but the experimental problem is to
find suitable alignment geometries that al-
low the independent measurement of the
principal components of the permittivity,
denoted as &, €&, and & in Fig. 9. One ap-
proach [28], which is equally applicable to
nonchiral and chiral tilted phases is to meas-
ure the permittivity of a homeotropically
aligned sample in which the measurement
direction is along the smectic layer normal.
This gives a result for g, defined by:

Ehomo = €1 + (€3~ €]) cos® 0 47)

where (& —¢;) is defined as the dielectric an-
isotropy (&; is equivalent to g and g, is
equivalent to £)). A second permittivity can
be measured for the so-called planar state,
for which a chevron structure is assumed
(Fig. 10) with a layer tilt angle of &: the cor-
responding permittivity is:
sin® §

& —oe in’ 0 (48)
the quantity de=(g,-¢&,) is defined as the
dielectric biaxiality.

In order to obtain the three components,
it is assumed that the mean permittivity ex-
trapolated from higher smectic and nemat-
ic phases may be used, such that:

Eplanar =

£= %(el +& + &) (49)

Specimen results for SCE13(R), a com-
mercial racemic host, are given in Fig. 11
[28].

The reduced symmetry of chiral phases
results in additional contributions to the low
frequency permittivity. Tilted chiral phases
such as smectic C*, F* and I* lack a centre
of symmetry, and it is possible for these ma-
terials to be ferroelectric. The resulting
spontaneous polarization Pg is directed
along the C, symmetry axis, and is perpen-
dicular to the tilt plane; it also depends di-

Figure 10. Chevron structure on a SmC phase.
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Figure 11. Dielectric results for SCE13(R) taken from
[28].
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rectly on the tilt angle 6:

B =Rsinb (50)

In the absence of any constraints, the direc-
tion of Pgq rotates from one smectic layer to
the next, with a period equal to the smec-
tic C* pitch, and so the average polarization
for a sample would be zero. However, sur-
face treatment or application of a field can
cause the helix to untwist, resulting in a per-
manently polarized sample. The spontane-
ous polarization arises from a preferred
alignment of molecular dipole components
which are perpendicular to the molecular
long axis, but it behaves differently from the
ferroelectric and ferromagnetic polarization
characterised for crystals. The liquid crys-
talline ferroelectric phases identified so far
are improper ferroelectrics, since the spon-
taneous polarization results from a sym-
metry constraint, whereas in proper ferro-
electrics the polarization results from dipole
—dipole interactions. The Curie — Weiss law
for proper ferroelectrics predicts a second
order phase transition at the Curie tempera-
ture from the high temperature paraelectric
state to a permanently polarized ferro-
electric state:

__NUE

5 -1 ey

However in chiral tilted liquid crystal smec-
tic phases, the polarization is driven by the
tilt angle, and the phase transition will not
necessarily be of second order.

The helical structure which can develop
in thick cells of chiral smectic C phases hav-
ing planar surface alignment conditions can
be used to obtain measurements of the com-
ponents of the dielectric permittivity tensor
[29], but the technique is restricted to chi-
ral smectic phases. Measurements are made
(see Fig.9) of the homeotropic state, as
above, and additionally the helical state
(Fig. 12), and the uniformly-tilted state ob-

Figure 12. Alignment states for the helical state of
chiral SmC phase.

Figure 13. Alignment of the unwound chiral SmC
phase.

tained by applying a field to unwind the he-
lix (Fig. 13):

Ehelix =
%cosz 5 (31 cos’ 0+ &3sin” 0 + 82) +
sin? & (81 sin® @ + &5 cos® 6)

Eunwound =

&, cos® 8 +sin’ 5(81 sin” 0 + &3 cos? 9) (52)

The use of Egs. (47) and (52) then allows
the evaluation of three principal permittiv-
ity components.

The electric susceptibilities of chiral
smectic A and chiral smectic C, I and Fcon-
tain terms related to the permanent dipole
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polarization which can develop in tilted
smectic phases (ferroelectricity), or which
can be induced in orthogonal smectic phas-
es through an induced tilt (electroclinism)
by electric fields in the plane of the layers.
The broken symmetry associated with these
phases is along an axis perpendicular to the
director, and the layer normal for smectics,
and so the extra dielectric contributions are
to a single perpendicular component of the
permittivity., The origin of the polarization
contributions to the electric permittivity of
chiral smectic A and smectic C phases is il-
lustrated in Fig. 14 [30].

Orientation of the transverse molecular
dipole moments become biased along the y-
axis (corresponding to &, above) when a tilt
develops either induced by an electric field
along the y-axis (orthogonal smectics) or

Figure 14. Contributions of soft mode (a) and Gold-
stone mode (b) deformations to the electric suscepti-
bility.

spontaneously in tilted smectics. This is
known as the soft mode contribution to the
electric susceptibility, and as well as con-
tributing to all smectic phases there is a de-
tectable effect in chiral nematic phases,
close to phase transitions. Tilted chiral
smectic phases can develop helicoidal struc-
tures, the helix axis being perpendicular to
the layers. In the unperturbed state the po-
larization associated with the spontaneous-
ly aligned transverse dipole components ro-
tates with the helix, however application of
an electric field perpendicular to the helix
axis gives a contribution to the electric po-
larization, and hence to the electric permit-
tivity component: this is known as the Gold-
stone mode. In terms of Fig. 14 the Gold-
stone mode describes polarization resulting
from changes in the azimuthal angle (¢) of
the director, while the soft mode is polariza-
tion from changes in the tilt angle 6. A Gold-
stone mode contribution will only be meas-
ured if there is a helicoidal structure, and so
will be absent in surface-stabilized chiral
smectic C structures, such as the planar and
unwound states described above.

The theory of the dielectric properties of
chiral smectic liquid crystals is far from
complete, particularly with respect to a mo-
tecular statistical approach. Simple Landau
theory [31] gives expressions for the contri-
butions of soft modes ()5) and Goldstone
modes (¥g) to the low frequency permittiv-
ity as:

)
xs = Fo K
kqi+2a (T, - T)
and
2,2
_ExyHp
XG qu% (53)

where (1, is the piezoelectric coefficient in
the Landau free energy, which measures the
coupling between the director and the pola-
rization, and €., is the high frequency part
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Figure 15. Soft mode and Goldstone mode contribu-
tions to the electric permittivity for the mixture
BAHABAC [32]; the full lines are theoretical results
from a generalized Landau theory.

of the permittivity component along the y-
axis, k is an effective elastic constant for the
helicoidal distortion, go=2 7/p is the wave
vector of the helical pitch p and a is the co-
efficient in the Landau free energy of the
term quadratic in the primary order param-
eter. The temperature dependence of the soft
mode and Goldstone mode contributions to
the electric permittivity is illustrated sche-
matically in Fig. 15.

4.2.2 Frequency Dependence
of the Electric Permittivity:
Dielectric Relaxation

A full theory of the frequency dependence
of the electric permittivity of liquid crystals
cannot yet be given. It is a formidable prob-
lem since it requires proper account to be
taken of the influence of orientational order
on molecular motion, as well as the effects
of macroscopic dielectric anisotropy. The
dielectric response of a rigid dipolar mole-
cule rotating in an isotropic fluid can be de-
scribed in terms of a single relaxation time
or rotational diffusion constant. In a liquid
crystal phase, the rotational motion is no

longer isotropic, and for a rigid rod-like or
disc-like mesogen in a uniaxial phase two
rotational diffusion constants can be de-
fined, parallel to or perpendicular to the
unique inertial axis. In general a dipole mo-
ment will not be along the inertial axis of a
molecule, and there is likely to be a compli-
cated relationship between the motion of the
dipole, which determines the frequency de-
pendence of the permittivity, and the rota-
tional motion of the molecule. For rigid
molecules, an anisotropic rotational diffu-
sion model in which the isotropic motion of
the molecule is modified by the orienting
potential of the phase is sufficient to de-
scribe the dielectric response of nematic.
For smectic phases translational order can
affect the reorientation of molecules, and
hence the dielectric relaxation, although this
seems to have a minor influence for SmA
and SmC phases. In tilted smectic phases the
molecular tilt causes biaxiality, and provides
an additional environmental constraint on
molecular rotation; such effects are some-
times detectable in the dielectric properties.
The increased in-plane order associated with
hexatic liquid crystals and more ordered
crystal smectic phases can be detected
through measurements of the permittivity
components. For chiral liquid crystal phas-
es such as chiral SmA* SmC*, SmF* and
SmlI*, there are new contributions to the per-
mittivity which arise from the alignment and
collective motion of molecular dipoles, and
these collective relaxation modes contribute
to the dielectric behaviour of these phases.

The origin of a frequency dependent per-
mittivity is molecular motion associated
with a dipole moment. In an oriented fluid,
induced or permanent dipole moments con-
tribute differently to the components of the
permittivity tensor; similarly the effects of
molecular motion as reflected by the fre-
quency dependence of the permittivity will
also be different for different components.
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Both real and imaginary parts of the permit-
tivity tensor are frequency dependent, and
there is a relationship between them known
as a Kramers — Kronig relation:

£ (@Y = £ (=0 +2j(“L‘ZB)d
—Wwo
£ (@) = 2(00J g (@) do
o -07) 54

where the integral excludes the singular
point at @=ay. It is normal to measure and
analyse both the real and imaginary parts
of £(w)*, but any model which violates
Eq. (54) must be open to doubt.

An idealized picture of the frequency de-
pendence of g, and £, may be constructed
by examining Eqgs. (36) and (37) for a uni-
axial liquid crystal having no local biaxial
order. The effects of induced moments can
be removed by subtracting the high frequen-
cy part of the permittivity or square of the
refractive index, giving for the real parts of
the permittivity:

_ »_NLF*g]
g(w)—nj = BeokaT
[t a+29)+pta-9)]
2 NLF gl
g, (w)—ny = _380 kT

201 2 1
[ul (1=5)+ (1+2Sﬂ (55)

Each component of £(@)’ contains two con-
tributions from the molecular dipole mo-
ment, and each can have different relaxation
times or frequencies. Thus frequency scans
of g(w)* and &, (w)* are each expected to
show two relaxation regions. The charac-
teristic frequencies or relaxation times will
be related to the rotational motion of a
molecule in an anisotropic environment,
and for a uniaxial molecule with two inde-

pendent moments of inertia, the dynamics
can be approximately described in terms of
three rotational modes. There is some arbi-
trariness in choosing these modes, but for
illustration we assert that the rotation of a
molecule can be broken down into contri-
butions from end-over-end rotation (),
precessional motion (@,) about the director
and rotation (®;) about its own long molec-
ular axis. These motions are illustrated in
Fig. 16.

A dipole component will contribute to a
principal permittivity if there is a mecha-
nism for that component to follow an
electric field applied along the particular
principal direction of the permittivity. The
manner in which the rotational modes allow
different dipole components to reverse in
particular directions is seen in Fig. 16. In a
nematic environment, it is expected that the
magnitudes of the characteristic frequencies
for the rotational modes will be in the order
w; <, < @;. Contributions to the permit-
tivity from different dipole components will
be lost above frequencies corresponding to
@y, @, and @5, and the variation of g;(®w)*
and g (w)* with frequency is shown in
Fig. 17.

This over simplified model matches the
experimental measurements obtained for a

Figure 16. Molecular rotational modes that contrib-
ute to the dielectric relaxation.



4.2

3

log @

Figure 17. Schematic plot of &) and &, against fre-
quency.

number of nematic materials [33], except
that the relaxations associated with @, and
@, are not separated in the frequency spec-
trum. The low frequency absorption meas-
ured in most liquid crystals can usually be
fitted very accurately by a semicircular Cole
—Cole plot, but higher frequency relaxa-
tions tend to be broader, indicating a range
of relaxation times. If other dipolar contri-
butions are included in the permittivity ex-
pression, for example those arising from lo-
cal biaxial order, then these would be
expected to relax at different frequencies,
and the corresponding dielectric spectrum
would be more complicated.

For rigid molecules the frequency depen-
dence of the orientational polarization in
isotropic liquids can be calculated using
Debye’s model for rotational diffusion. This
may be modified to describe rotational dif-
fusion in a liquid crystal potential of appro-
priate symmetry, but the resulting equation
is no longer soluble in closed form. Martin,
Meier and Saupe [34] obtained numerical
solutions for a nematic pseudopotential of
the form:

u=-bScos’*0 (56)

where 0 is the angle between the long axis
of auniaxial molecule and the director. They
assumed that the nematic potential had no
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effect on molecular rotation about the long
axis of the molecule, so that relaxation pro-
cesses involving i, are not influenced by or-
ientational order.

The solutions to the anisotropic diffusion
equation can be written as a series expan-
sion, each term of which can be associated
with a particular relaxation time. For a har-
monic perturbation of the rotational distri-
bution function, as occurs in a dielectric re-
laxation experiment with an ac electric field,
it was found that a single relaxation time was
sufficient to describe the relaxation of L,
and this could be expressed in terms of the
relaxation time (1) for 1, in the absence of
a nematic potential by:

T=Ji T (57

The subscript i=ll or L identified the com-
ponent of the permittivity, and the quantity
J; is a retardation factor calculated numeri-
cally from the model, which depends on the
coefficient b of the pseudopotential, (j; is
often written as g;, which we have avoided
because of confusion with the Kirkwood di-
pole correlation factor g{”). An approximate
result for the retardation factor was calcu-
lated [35] such that:

= u[exp (ﬁs_)_l]

bS kT
where bS is identified as the height of the
potential barrier to end-over-end rotation of
a molecule.

The full solution of the rotational diffu-
sion equation including a general single
particle potential of D_, symmetry has been
investigated [36], and it is found that the
dipole correlation function, which can be
related to the permittivity as a function of
frequency, is a sum over many exponential
terms each characterised by a different re-
laxation time. Extending Eq. (20) for an an-
isotropic fluid gives:

(58)
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£ (@) *—n? {(28,- (@)+n?)e; (0)}
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=1-iw [C;(1)e' dt (59)
0

where C,(r) is the dipole time correlation
function defined by:

_ (O p®)
(1:(0) 14;(0))

It was observed that in many cases C;(f)
could be approximated by the first term, and
this gives rise to four relaxation times cor-
responding to the four dipole contributions
appearing in Eq. (55). Resolving the dipole
into its longitudinal and transverse com-
ponents, as above, enables the correlation
functions for directions parailel and per-
pendicular to the director to be written as
[36, 371:

G (60)

Go=-L 1] (14+28) Do (1) + | 1)
3ud | ud (1- 8) Py (1)
1} (1= 8) Dy (1) + | .
C () =—=
L0=32 .Utz(l‘*‘%s)@n(t)

where @,(¢) describe the time dependence
of different angular functions representing
different relaxation modes for the molecu-
lar dipole in an anisotropic environment
{38]. In the rotational diffusion model each
@, (1) can be written in terms of a single re-
laxation time related to a particular rotation-
al mode. For example the low frequency
end-over-end rotational is given by @, and
can be accurately represented by a single ex-
ponential, so that:

t

Pyo(t)=e ™ =(cosH(0)cosO (1)) (63)

The relaxation times 7; depend on the pa-
rameters of the assumed nematic pseudopo-

tential and the anisotropy in the rotational
diffusion constants D, and D , which are re-
lated to the molecular shape and the local
viscosity. If D, and D are assumed to be
equal, then @y, ()= D, (), and the rotation-
al modes can be represented as shown in Fig.
16 and the effect of an ordering potential on
the relaxation times is shown schematical-
ly in Fig. 18.

These results indicate that the effect of
the liquid crystal ordering potential is to de-
crease the relaxation frequency for end-
over-end rotation (7)) and increase it for
rotation about the molecular long axis. If an-
isotropy in the rotational diffusion constants
is included, then the relaxation time 7y, is
further retarded.

Experimental measurements of dielectric
relaxation confirm qualitatively the predic-
tions of the rotational diffusion model, in
that &, has a low and high frequency relax-
ation, while &, only shows relaxations at
higher frequencies. Unfortunately there are
few liquid crystal systems that have been
studied over wide frequency ranges, and
measurements at high frequencies >50 MHz
on aligned samples are difficult. Some typ-
ical results are shown in Fig. 19.

10

T_IIN
\

!
0.6 <P2 > 0.7

Figure 18. Calculated relaxation frequencies in re-
duced units plotted as a function of order parameter
for para-azoxyanisole [36].
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In the study of dielectric relaxation, tem-
perature is an important variable, and it is
observed that relaxation times decrease as
the temperature increases. In Debye’s mod-
el for the rotational diffusion of dipoles, the
temperature dependence of the relaxation is
determined by the diffusion constant or mi-
croscopic viscosity. For liquid crystals the
nematic ordering potential contributes to ro-
tational relaxation, and the temperature de-
pendence of the order parameter influences
the retardation factors. If rotational diffu-
sion is an activated process, then it is appro-
priate to use an Arrhenius equation for the
relaxation times:

E,
kg T

T=Aexp (64)
where E, is the activation energy or barrier
to dipole reorientation, and A is another pa-
rameter of the model. This would seem to
be a useful way to describe end-over-end ro-
tation in liquid crystals [40].

It is observed experimentally that the ac-
tivation energies for dipole reorientation of-
ten change at liquid crystal phase transi-
tions. Changes occur due to differences in
the degree of order and the local viscosity,

L Figure 19. Complex permittivity

10° components for 4-pentylphenyl

4-propylbenzoate [39].

and it is expected that the activation ener-
gies will be higher in smectic phases. In
practice is often observed that the end-over-
end rotation has a lower activation energy
in the smectic A phase than in the higher
temperature nematic phase, and this casts
some doubt on the role of the order param-
eter and viscosity, which are both higher in
smectic phases than the nematic phase. Ben-
guigui [41] has satisfactorily explained the
results for 7;, measured for nematic and
SmA phases in terms of a free-volume mod-
el due to Vogel and Fulcher. Their result for
for the relaxation time is:

E, (65)

T=Bexp—*——
kg (T =Tp)

where T, is a hypothetical glass transition
temperature. At phase transitions from dis-
ordered smectics (A and C) to those with
hexatic order (B, F, and I) there is an order
of magnitude increase in relaxation times,
but activation energies for end-over-end di-
pole reorientation are similar in all smectic
phases. This is illustrated in Fig. 20 using
results for 4-pentylphenyl 4’-heptylbiphe-
nyl-4-carboxylate [42]. The relaxation fre-
quencies decrease by nearly a decade on go-
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Figure 20. Relaxation frequencies plotted on a loga-
rithmic scale as a function of inverse temperature (K)
for 4-pentylphenyl 4’-heptylbiphenyl-4’-carboxylate.

ing from the nematic phase or the smectic A
phase, and from the smectic A phase to the
smectic B phase, but the activation energies,
given by the slope of the lines in Fig. 20 are
approximately the same.

Models for the interpretation of the low
frequency relaxation in liquid crystals are
often based on a single particle relaxation
process, but spectroscopic probes of molec-
ular motion such as magnetic resonance,
neutron scattering and time-resolved fluo-
rescence depolariastion, suggest that re-
orientation times for mesogens are of the
order of 10 s to 1075 in isotropic, ne-
matic and disordered smectic phases. Thus
interpretation of dielectric relaxation pro-
cesses at MHz or even kHz frequencies in
terms of single molecule rotation is not like-
ly to be correct. The low frequency relaxa-
tions observed in liquid crystals are the
result of collective molecular motion, al-
though the models outlined above are use-
ful in analysing results and comparing ma-
terials.

It has been demonstrated that the differ-
ent dipolar contributions to the permittivity
components in Eq. (55) cease to contribute

at different frequencies, and if these fre-
quencies are well-separated the Debye
equations can be applied separately to each
term. The dielectric anisotropy changes as
a function of frequency, and for particular
relative values of longitudinal and trans-
verse dipole moments, it is possible for Ae
to change sign from positive at low frequen-
cies to negative at high frequencies [39].
Liquid crystals exhibiting this behaviour are
known as dual-frequency or two-frequency
materials, because of potential applications
in fast-switched liquid crystal devices,
which are addressed by both low frequency
(Agg+ve) and high frequency (Ag,—ve)
signals. Application of the Debye Equa-
tion (10) for g, gives the frequency at which
Ag(w) changes sign:
— )= -1 | A&

0w(Ae=0)=1 \/—Aehf (66)
The frequency dependence of the permittiv-
ity component of chiral smectic phases
along the director is similar to that observed
for nonchiral materials, but for dielectric
measurements perpendicular to the layer
normal, ferroelectric polarization results in
additional contributions to the electric sus-
ceptibility. Both the soft mode and Gold-
stone mode contributions are frequency de-
pendent, and the latter gives rise to a low
frequency relaxation for helicoidal smectic
structures corresponding to the rotation of
the polarization about the helix axis. This
relaxation frequency is approximately inde-
pendent of temperature, indicating that ro-
tation of the polarization about the helical
axis has zero activation energy, and so is
identified as a Goldstone process. There are
in principle four relaxation processes that
can contribute to g, in chiral smectic phas-
es: two at low frequency are associated with
the motion of the director, but there are al-
so two high frequency modes which relate
to changes in the polarization for a fixed di-



rector orientation. The former low frequen-
cy process exists for the orthogonal smectic
phases. Typical relaxation frequencies for
these modes are wg=1—10*kHz and
g =10—-200 Hz. The high frequency po-
larization modes (wpg, Wpg;) are essentially
the same as the dipole relaxation modes for
€, already discussed in the context of non-
chiral phases, except they relate to a linear
transverse dipolar contribution to the per-
mittivity; they are degenerate in orthogonal
smectic phases, and have relaxation frequen-
cies in the region of 500 MHz. The temper-
ature dependence of these relaxation pro-
cesses is illustrated schematically in Fig. 21.

Contributions to the permittivity from
fluctuations in the amplitude of the tilt an-
gle are expected to be small away from
phase transitions, but this process is strong-
ly temperature dependent, and the relaxa-
tion frequency tends to zero at a phase tran-
sition: this relaxation is known as the soft
mode in common with similar behaviour in
crystals. Both the Goldstone mode and the
soft mode relaxation processes are a result
of the cooperative motion of molecular di-
poles, and there is no proper molecular the-
ory for them. The real and imaginary parts
of the permittivity fit semicircular Cole—
Cole plots, and so each mode can be char-
acterized by a single relaxation frequency,
although the dielectric absorptions for the

1
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Figure 21. Schematic variation of the frequency of re-
laxation modes for chiral SmA and SmC phases [30].
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two processes may overlap in the frequen-
cy spectrum.

The dielectric response of smectic C* lig-
uid crystals can be derived from a Landau
model [43] with the result:

£,(0)* £, (=Y

- X6, Xs
l+iwtg 1+iwTg

APG__ , _XPs
l+iwTpg 1+iw7Tpg

(67)

where y; are the increments in the electric
susceptibility associated with the Goldstone
and soft modes for the director and the
polarization having relaxation frequencies
(7;). The dielectric increment for the Gold-
stone and soft modes is given in Eq. (53).
X can also be expressed in terms of the
spontaneous polarization as:

2
1{ B
S 68
£ Xc Zk(qsinej (68)

As explained earlier, both the Goldstone and
soft modes contribute to the perpendicular
permittivity component in the smectic C*
phase, although away from 7, the Goldstone
mode dominates in twisted structures.
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Elasticity is a macroscopic property of mat-
ter defined as the ratio of an applied static
stress (force per unit area) to the strain or
deformation produced in the material; the
dynamic response of a material to stress is
determined by its viscosity. In this section
we give a simplified formulation of the the-
ory of torsional elasticity and how it applies
to liquid crystals. The elastic properties of
liquid crystals are perhaps their most char-
acteristic feature, since the response to tor-
sional stress is directly related to the orien-
tational anisotropy of the material. An im-
portant aspect of elastic properties is that
they depend on intermolecular interactions,
and for liquid crystals the elastic constants
depend on the two fundamental structural
features of these mesophases: anisotropy
and orientational order. The dependence of
torsional elastic constants on intermolecu-
lar interactions is explained, and some mod-
els which enable elastic constants to be re-
lated to molecular properties are described.
The important area of field-induced elastic
deformations is introduced, since these are
the basis for most electro-optic liquid crys-
tal display devices.

5.1 Introduction
to Torsional Elasticity

An important aspect of the macroscopic
structure of liquid crystals is their mechan-
ical stability, which is described in terms of
elastic properties. In the absence of flow, or-
dinary liquids cannot support a shear stress,
while solids will support compressional,
shear and torsional stresses. As might be ex-
pected the elastic properties of liquid crys-
tals are intermediate between those of lig-
uids and solids, and depend on the symme-
try and phase type. Thus smectic phases
with translational order in one direction will
have elastic properties similar to those of a
solid along that direction, and as the trans-
lational order of mesophases increases, so
their mechanical properties become more
solid-like. The development of the so-called
continuum theory for nematic liquid crys-
tals is recorded in a number of publications
by Oseen [1], Frank [2], de Gennes and Prost
[3] and Vertogen and de Jeu [4]; extensions
of the theory to smectic [5] and columnar
phases [6] have also been developed. In this
section it is intended to give an introduction
to elasticity that we hope will make more
detailed accounts accessible: the impor-
tance of elastic properties in determining the
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behavior of the mesophases will also be de-
scribed.

The starting point for a discussion of elas-
tic properties is Hooke’s Law, which states
that the relative extension of a wire (strain)
is proportional to the force per unit area
(stress) applied to the wire, and the constant
of proportionality is the elastic constant:

F x

f_rpx 1
A=k (1)
The corresponding elastic energy can be ob-
tained by integrating with respect to strain
to give:

U_1,2
=1Fd ==k 2
U _[ X or ) e 2)

where e=x/l is the strain, and U/V is the en-
ergy density. To describe the relationship
between stress and strain in three dimen-
sions requires a tensorial representation of
the elements of stress and strain. If a body
is subjected to a general stress, then the rel-
ative positions of points within the body will
change.

The change in positions of particles at
points r, and r, (see Fig. 1) due to some ap-
plied stress can be written as:

ri=r,+u
ry=ry+v 3

Figure 1. Strain in a body.

for small strains we can write using the ten-
sor suffix notation:

— +(d”ﬁ )rﬁ @)

dry

where 1, =ry,— 745 SO that the change inrel-
ative positions of r; and r, becomes:

d
(réa_rl'a)—(rZa_rla)=(dL’:)rﬁ (5

duﬁ
dr,
strain tensor, the diagonal elements of which
measure extensional strain along the x, y, z
axes, while off-diagonal elements are a
measure of the shear strains (i.e. the change
in the angle between the position vectors r;
and r, in the strained state). For small
strains, the change in this angle (8, , defined
in radians) projected onto the xy, yz and zx
planes is the sum of appropriate off-diago-
nal elements:

The tensor €ap=( ] is known as the

Yoy = €xy + €yx
Ve =€y, t €y 6)

Yix=¢€, t €y

Clearly if the strain tensor is antisymmetric
such that e,g=-ep,, then the shear angles
are zero, which corresponds to a whole body
rotation without distortion. Itis usual, there-
fore, to redefine the strain tensor in terms of
its symmetric and antisymmetric parts, so
that:

(N

Cop = %(e‘xﬁ + eﬁ“)sym * %(eaﬂ P a)amisym

The symmetric part of the strain tensor can
be associated with changes in the relative
positions of particles within a strained sam-
ple. For incompressible materials this is
zero, and such an assumption is normally
applied to nematic liquid crystals. Howev-



er, in smectic and columnar phases the trans-
lational order results in some nonzero com-
ponents of the symmetric part of the strain
tensor.

We have defined the stress applied to a
body as the force per unit area: the force may
be perpendicular to the unit area, as with
normal stress or pressure, or it can be in the
plane of the unit area when it is known as
shear stress. For any particular direction de-
fining the normal to an element of area A,
there will be a single component of normal
stress and two shear stress components.
Thus a system of forces acting on a body can
be described in terms of the nine compo-
nents of the stress tensor 0,g, defined as:

ng F
Oup = “Aﬁ

(8)

where F,, is a force acting on an element of
area A, the direction of which is defined by
its normal n,,. Diagonal components of the
stress are pressure, while off-diagonal ele-
ments refer to shear stress; for a stressed
body to be in mechanical equilibrium, the
normal forces on opposite faces must be
equal, and the turning moment represented
by off-diagonal elements must be zero (see
Fig. 2).

Clearly the strain is a consequence of
stress, and for small strains there is a linear

Figure 2. Elements of stress tensor.
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relationship between them. Since both stress
and strain are second rank tensors, the ma-
terial property that links them must in gen-
eral be a fourth rank tensor, so that;

Cop = )y Cop,v5 €ys 9)

Y.0=x,%,2

The intrinsic symmetry of o, and e,s re-
duces the number of components of cypg s
to 36: the elasticity tensor ¢,z s is also sym-
metric with respect to interchange of pairs
of suffixes aff and ¥d which further limits
the number of independent components to
21. Phase symmetry also lowers the num-
bers of elasticity components that have to be
independently measured.

For small strains, the elastic energy den-
sity is second order in the strain so that:

u= % Cop, 15 €af €ys (10)
and forisothermal strains this is a direct con-
tribution to the free energy density of the
system; in Eq. (10) summation over all suf-
fixes is assumed, representing 81 terms.
There is an alternative notation widely used
in elasticity theory, which enables the elas-
ticity to be expressed in a more compact
way. For homogeneous strain, and in the ab-
sence of a turning moment, both g,z and e,5
are symmetric tensors having six indepen-
dent components. New elastic constants can
be defined by:

an

C; = 2 cjej
j=16
but care must be exercised in manipulating
the components with reduced indices, since

they no longer transform as tensors.
Nematic liquid crystals having no trans-
lational order will not support extensional
or shear strains, but they will support tor-
sional strain which results from application
of a torque. The torsional strain is conven-
iently represented in terms of the angular
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displacement of a unit vector (the director)
at position r from its equilibrium orientation
at the origin, and by analogy with Eq. (4) the
torsional strain tensor e,g can be defined:

, dnﬁ
na=na+ E rﬂ

or
n&zna+eaﬁrﬁ (12)

As before the energy density can be written
as:

8= %kocﬁ,yﬁ Cop €y5 (13)

where we have now used free energy for an
isothermal strain, and the tensor kg 5 is the
torsional elasticity. If n is chosen to be along
the z-axis at the origin, for small strains, the
components eg. can be neglected, and the
nonvanishing elements of the strain tensor
can be identified as follows with splay, twist
and bend deformations of the director:

dn dn
splay: e, =—d; ; €y :—dyy
d
twist : exy=d—’3—; eyx=(il—’;’)‘ (14)
d
bend : eu=dd—nzx—; ezy:dizy

these are illustrated in Fig. 3.

The condensed notation for the elements
of the torsional elasticity tensor is normal-
ly used, and the torsional strain elements are
written as a column vector with the compo-

nents:

e(i=1-6)=e (15

e

XX eyx’ X’ T xy? yy’ ezy

so the free energy density can now be writ-
ten as:

1
2. %M (16)

The strain tensor must conform to the sym-
metry of the liquid crystal phase, and as
a result, for nonpolar, nonchiral uniaxial
phases there are ten nonzero components of
k;;, of which four are independent (k , &>,
k34 and k,,). These material constants are
known as torsional elastic constants for
splay (ky ), twist (k,,), bend (k33) and sad-
dle-splay (k,4); terms in k,, do not contrib-
ute to the free energy for configurations in
which the director is constant within a plane, -
or parallel to a plane. The simplest torsion-
al strains considered for liquid crystals are
one dimensional, and so neglect of k, 4 is rea-
sonable, but for more complex director con-
figurations and at surfaces, k,, can conirib-
ute to the free energy [7]. In particular k,,
is important for curved interfaces of liquid
crystals, and so must be included in the de-
scription of lyotropic and membrane liquid
crystals [8]. Evaluation of Eq. (16) making
the stated assumptions, leads to [9]:

g:%k“(em+eyy)2+%kzz(e,(y—eyx)2
+%k33(eu+ezy)2

_(k22_k24)(exx €yy ~ Exy eyx) (17)

Figure 3. Principal torsional
elastic deformations.



This expression is often written in a more
compact vector notation as:

g=7 [k (V-n) +kos (n- ¥ xn)?
+k33(n><V><n)2—(k22—k24)
~(V~{nV~n+n><V><n})] (18)

In the above we have assumed that the low-
est energy state is one of uniform parallel
alignment of the director; however, it is pos-
sible to modify these expressions for situa-
tions where the lowest energy state might be
one of uniform splay, bend or twist. Of these,
the last is important because it describes the
helical liquid crystal phases that result from
chiral molecules. Such states arise if there
are terms in the free energy that are linear
in the strain, and for a chiral nematic the free
energy density becomes:

g=—k; (exy—eyx)+% kyy (exx+eyy)2 (19)

+%k22(exy‘eyx)2 +‘;‘ k33 <€zx+€zy)2
Defining the torsional twist strain as
t=(e,,—e,,), and minimising Eq. (19) with
respect totresults in a stabilized helical struc-
ture having a finite twist strain fg==k,/k,,,
and the free energy density can be written
as:

g:lkll(exx+eyy)2

2

1 2
+§k22(€xy—€yx—l0)

1 2 ]
+§k33(eu +ey) —Eknz& (20)
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The lowest energy state for this structure is
where the director describes a helix along
one of the axes. Thus assuming that there is
no bend or splay strain energy, a chiral ne-
matic has a director configuration such that:

n,=cos(2nz/p); n,=sin(2nz/p); n,=0

where p is the pitch of the helix, as illustrat-
ed in Fig. 4.

Using this director distribution, the non-
vanishing terms in the free energy expres-
sion Eq. (20) are:

2
_1 one ) (9m )
g‘2k22|:ny(anz) nx[anzj to:l
—%kzzl‘g 2D

which is a minimum when ¢y=2xr/p, i.e. the
lowest energy state is one of uniform pitch.

It is also possible to envisage minimum
energy structures with non-zero splay or
bend strain, when other terms linear in strain
contribute to the free energy. However, a
uniformly splayed or bent structure will no
longer have the reversal symmetry +n=-n
and so will be associated with permanently
polarized structures; a uniformly bent struc-
ture would have to be biaxial with a polar
structure perpendicular to the major axis.
These structures, illustrated in Fig. 5, are as-
sociated with the phenomenon known as
flexoelectricity, where polarization is cou-
pled to elastic strain.

It is not essential that the molecular asym-
metry is linked to an electric polarization,
although symmetry suggests that the two are

N

Figure 4. Director helix in a chi-
ral nematic.
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Figure 5. Flexo-
electric structures.

coupled. Equivalent structures to those il-
lustrated may be obtained on the basis of
shape asymmetry, the so called steric dipole.
So far only torsional contributions to the
elastic strain energy have been considered,
but smectic and columnar liquid crystals
having translational order may support ex-
tensional and shear strain like solids along
certain directions. For a uniaxial SmA phase
with one degree of translational freedom,
the only homogeneous strain supported is an
extension or compression along the axis of
translational order (i. e. perpendicular to the
layers). Bend and twist strains involve
changes in layer spacing, and so are likely
to be of very high energy; they will couple
with layer compression but will be high or-
der contributions to the free energy, and are
neglected for small strains. Thus the elastic
free energy of a SmA phase reduces to:

g=1B

du 2 1 2
5 (—Zj +§k11(V'n) (22)

dz

where B is a compression elastic constant
for the smectic layers; (du,/dz) is the layer
strain along the layer normal, and &, ; is the
splay elastic constant.

The description of the elastic properties
of columnar phases, biaxial smectics, chiral

smectics and more ordered liquid crystal
phases is being developed [10]. Since co-
lumnar phases are two dimensional solids,
it is expected that compression elasticity in
the plane perpendicular to the columns will
be important, and the high strain energy as-
sociated with in-plane deformations pre-
vents splay or twist torsional distortion [11].
It is however possible to bend the columns,
while maintaining a constant in-plane sep-
aration of the columns, so bend distortions
can be expected in columnar liquid crystals:
the corresponding free energy density for a
uniaxial columnar phase becomes:

2
1 du duy
=—B| [ +——
) (dx dy)
2 2
Lo dus _duy " (du, | duy
2 dx dy dy dx

+%k33(n><7><n)2

(23)

Results for biaxial smectics and columnar
phases have additional compressional
terms, but tilted smectic phases can support
additional torsional distortions. Such phas-
es are conveniently described in terms of
two directors, one along the tilt direction,
corresponding to the nematic director n, and
the projection of r on the layer plane, known
as the c-director (see Fig. 6).

In practice it is mathematically more con-
venient to define a director (a) normal to the

Figure 6. Definition of a and ¢ directors.
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layer such that:
n=acosf + csinf (24)

Torsional distortions can now be written in
terms of derivatives of a and ¢, and it is
found [10] that nine torsional elastic con-
stants are required for the smectic C phase.
Mention should be made of the biaxial
smectic C* phase, which has a twist axis
along the normal to the smectic layers. This
helix is associated with a twist in the c-di-
rector, and so elastic strain energy associat-
ed with this can be described by terms sim-
ilar to those evaluated for the chiral nemat-
ic phase.

5.2 Director Distribution,
Defects and Fluctuations

The development of Eq. (18) was based on
the idea that torsional strain resulted from a
director that is a function of position. Pro-
vided that the first nonvanishing term in the
free energy is quadratic in torsional strain,
the minimum energy configuration of a lig-
uid crystal will be that in which the torsion-
al strain is zero and the director is every-
where parallel to a symmetry axis. Linear
contributions to the strain energy result in
equilibrium structures in which the director
is not uniformly parallel, but has some par-
ticular spatial dependence, as with the chi-
ral nematic phase. External influences will
also affect the director distribution in space,
and surface interaction, external fields and
thermal fluctuations give rise to structures
in which the director is a function of posi-
tion. Neglecting fluctuations, the director
distribution will be that which minimizes
the free energy given by:

g:%J[kll(V-n)2+k22(n-Vxn)2
+hk33 (R XV xn) + g ] dr (25)

here g.,, contains contributions to the free
energy from external forces.

Experimental observations indicate that
it is possible to define the director orienta-
tion by surface treatment or external electric
or magnetic fields, and a simple example of
the effect of surfaces on the director distri-
bution in a nematic is illustrated in Fig. 7.

Two rubbed plates are held at a distance /
apart, such that the alignment directions in-
clude an angle 6. The director orientation of
a nematic between these plates will be de-
fined by the rubbing directions at the plate
surfaces, but in the bulk the director distri-
bution will be that which minimizes Eq.
(25). De Gennes [12] has shown that for this
simple twist deformation, the director orien-
tation varies linearly with position as indicat-
ed in the figure. Under these circumstanc-
es, the director can be written in terms of:

n, = Sin(ely); n,=0; n, = cos(?) (26)

and the corresponding free energy density
per unit wall area becomes:

2
g=%k2297 (27)

The torque ¢ is given by:

_diz_kzze
deo l

t= (28)

NN

90 -

Figure 7. Director distribution between twisted plates
for 8 = 90°.
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Strong Anchoring

Weak Anchoring

0] Z

Figure 8. Plot of director orientation for strong and
weak anchoring.

and is constant through the sample. Thus
plate 1 exerts a torque of k,,60// on plate 2,
while plate 2 exerts a torque of —k,,8/] on
plate 1.

This calculation assumes that the torques
of opposing plates are insufficient to disturb
the orientation of the director at the surface:
such a condition is known as strong anchor-
ing. In practice the strength of surface inter-
actions may have to be considered, and in
the example given, weak anchoring would
cause the director orientation close to the
boundary surfaces to depart from a linear
dependence on position, as illustrated in
Fig. 8.

For weak anchoring there is a competi-
tion between the torque in the bulk due to
one plate, and the torque resulting from the
other surface; this is usually confined to a
boundary region as indicated in the figure.
External electric and magnetic fields will al-
so affect the equilibrium director distribu-
tion, and this is the basis of many liquid crys-
tal applications; these effects will be con-
sidered later.

5.2.1 Defects in Liquid Crystals

It has been explained how nonuniform di-
rector distributions can arise owing to sur-
face interactions or external fields, and these

can be detected optically or by other physi-
cal methods. In many liquid crystal samples,
large inhomogeneities of director orienta-
tion associated with structural defects can
be observed by polarized light microscopy,
and these clearly involve elastic strain ener-
gy. In this section we will outline the elas-
tic theory of these defects: reviews of this
topic have been given by Chandrasekhar
[13] and Kleman [14]. As an illustration we
will consider the simplest type of fluid de-
fect observed in nematics named disclina-
tion lines by Frank.

In two dimensions and setting all the
torsional elastic constants equal, the free
energy density expression Eq. (17) can be
written as:

g= %k [(em + eyy)2 + (exy - eyx)z} (29)

If the director is confined to a plane, then its
components may be represented by:

n,=cosf(r) and n,=sin6(r)

where 8(r) is a function of x and y in the
plane. The free energy density then be-
comes:

2 2
1 dé dé
==k||—| +|
§72 {(dx) (dy” 0
This is minimized, corresponding to an
equilibrium structure when:

d’e  d’e

—+-—7=0 31
dx®  dy? 1
The defect-free solution to Eq. (31) is obvi-
ously when 8is independent of position, but
other solutions corresponding to disclina-
tion lines are given by:

g=stan! @) +6, (32)

where s is the strength of the disclination.
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For a fixed distance from the origin, the di-
rector orientation as given by Eq. (32)
changes by sT as y/x varies from +oco to —oo;
contours of solutions for different s are giv-
en in Fig. 9. These director distributions
give rise to characteristic images of discli-
nation lines, which are readily observed for
thin films in a polarizing microscope.

The elastic strain energy associated with
a disclination line can now be calculated
from Eq. (30) as:

g/unit length = s>m k In (rf%] (33)

"min

Fmax 18 the distance from the centre of the
disclination at which the strain energy be-
comes effectively zero, while r;, defines
the size of the core of the disclination, the
energy of which cannot be calculated from
the above equations, which apply to small
strains. The quadratic dependence of the
strain energy on s explains why usually on-
ly disclinations of low s are observed in low
molecular weight liquid crystals: higher
strength disclinations have been observed in

polymer liquid crystals [14], since these can
support higher strain energies.

In real samples there will be a number of
disclinations corresponding to different
magnitudes and signs of s. The resultant ef-
fect of a number of disclinations on the di-
rector orientation at some point in the fluid
can be obtained by combining the corre-
sponding director angles. The correspond-
ing free energy shows that disclinations of
similar sign will repel each other, while
those of opposite sign will be mutually at-
tracted.

This simple treatment of liquid crystal-
line defects is only applicable to nematics,
and the detailed appearance of disclination
lines will differ from the simple structures
described above because of differences
between the elastic constants for splay, twist
and bend. In smectic phases, defects asso-
ciated with positional disorder of layers will
also be important, and some smectic phase
defects such as edge dislocations have to-
pologies similar to those described for crys-
tals. The defect structures of liquid crystals
contribute to the characteristic optical tex-

Figure 9. Disclinations obtained by so-
lution of Eq. (32). The lines represent
contours of the director.
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tures, which are used to identify different
liquid crystal phases, and it is apparent that
there is a wealth of information on elastic
properties contained in the observed optical
textures.

5.2.2 Fluctuations

Neglecting static distortions which may re-
sult from interactions with surfaces or ex-
ternal fields, the lowest energy director con-
figuration is predicted to be one of uniform
director orientation. However, even in the
absence of external influences, locally the
director fluctuates about its lowest energy
configuration, and this local director orien-
tation disorder can contribute to liquid crys-
tal properties. For example the characteris-
tic turbidity of liquid crystalline phases is
due to fluctuations in the refractive indices
on the scale of the order of the wavelength
of light. The origin of this nonuniform align-
ment is thermal excitation of librational
modes associated with the director. The en-
ergy is assumed to be a quadratic function
of the torsional strain; but since the torsion-
al elastic constants are very small, little ther-
mal energy is required to excite a torsional
libration and so disturb the uniform direc-
tor configuration. In reality there are many
torsional modes that can be simultaneously
excited, and the long-range orientational
structure of the liquid crystal can be ex-
tensively disordered. This picture of direc-
tor disorder assumes that the molecular or-
ganization is unaffected by the long-range
macroscopic disorder, although it must be
remembered that the director has no inde-
pendent existence, and is itself defined by
the molecular orientations averaged over an
appropriate volume.

The director orientational disorder can be
formally represented in exactly the same
way as the molecular disorder by defining a

director order parameter as:
=L -5, 34
Onp = 5 (3na(r) np(r) = 8yp) (34)

where n,(r) are the components of the di-
rector as a function of position.

The spatial variation of the director can
be expressed in terms of Fourier compo-
nents of wave vector ¢, such that:

ng (@) =V [ny(r)explig-r)d’r (35
ng (r)=V(2m)~ [ny (g) exp(-iq-r)d’q

Small distortions from a director axis z can
be expressed in terms of n,(g) and n,(q);
however these are not the normal coordi-
nates for amode of wavelength A=2n/q, and
using the following transformation, the free
energy can be written as the sum of quad-
ratic contributions from the normal modes:

( ) dx q iy
le (Z)}:f_zl—z_ [—q qu" ] .
o airad) LoD Al

For each ¢ in a uniaxial phase there are two
normal modes corresponding to a splay—
bend distortion »n,{(q) and a twist—bend dis-
tortion n,(q): biaxial liquid crystal phases
have five normal modes for each value of q.
The free energy density can be written in
terms of the normal coordinates for torsion-
al displacement in a uniaxial nematic as:

=22 [L@n@ + L@m@’] (7
q

The coefficients A, and A_ are given by:

A =k11(%%+CIy2)+k33(Iz2

A=kyz(qi+aq})+ksza? (38)

Because the torsional elastic constants are

small, the terms in the expression for the free
energy density are treated classically so that
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according to the equipartition theorem the
average contribution of each mode is sup-
posed to be kg 7/2, giving:

ke T
<n1 (‘1)2> = ﬁ%@
(m ()= %5 (39)

It is now possible to determine the mean
square fluctuation of the director from its
aligned state along the z-axis, such that:

(e (r)? +ny (r)?)
Grmax

:5%qin<"l(q)2+"2(q)2>d3q (40)
There is one problem remaining which is to
fix the limits for the integration over g [15].
The lower limit for ¢ is determined by the
volume of the sample, since it is unrealistic
to have distortion modes of wavelength
longer than the maximum dimensions of the
sample container: for an infinite sample g,,,;,
=0. The upper limit for g corresponds to the
fluctuation mode of shortest wavelength,
which is likely to be of the order of molec-
ular dimensions.

If the elastic constants for splay twist and
bend are assumed to be independent of g,
and for simplicity are set equal to k, then
evaluation of Eq. (40) enables the director
order parameter to be determined as fol-
lows:

<Qz~ (r)> = % <3nZ (r)2 — 1>
=1 ’% (ne (1) +n, (r)?)
: 21’k 41

Fluctuations in the director orientation will
modulate the anisotropy of physical proper-
ties such as the electric permittivity tensort,

which can be written as:

eap =€+ 5 (31 (r)ng(r)=8,)  (42)
where € is the average permittivity and
Ag=g —¢, is the permittivity anisotropy.
Light scattering arises because of spatial
and time-dependent fluctuations of the lo-

cal dielectric tensor:
Oeap(r, 1) = €,5(r, 1) — €,5(0) (43)

and if these fluctuations are expressed in
terms of Fourier components of wave-vec-
tor g, the intensity of scattered light can be
derived as [16]:

s (g.0)=

+o0

- | (8eir(q,0) Seip(q,t)) exp—imt dt (44)

—oo

The subscripts i, f refer to the polarization
directions of the incident and scattered light,
q is the wave-vector of the scattered light,
and the constant is given by:

2
const = L
A R%e

(45)

where [ is the incident light intensity, wave-
length A, and R is the distance from the
scattering volume to the detector. Choice
of suitable scattering geometries [17] and
measurement of the intensity as a function
of scattering angle allow the determination
of the elastic constant ratios k;3/k;; and
kaolky (18).

5.3 Curvature Elasticity
of Liquid Crystals
in Three Dimensions

As pointed out for Eq. (17) there is a con-
tribution to the elastic energy from saddle-
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splay distortions, which can be neglected in
some circumstances. However for distor-
tions such that the director is not constant in
one plane, the term in &, , must be included
in the free energy. Liquid crystal structures
in which there is curvature in two dimen-
sions can support saddle-splay distortion,
and such curvature is often associated with
fluid interfaces in liquid crystals. The main
area of importance for interfacial contribu-
tions to the elastic energy is lyotropic liquid
crystals formed by molecular association
and segregation in materials having a min-
imum of two chemical constituents. A typ-
ical lyotropic system consisting of water and
an amphiphile exhibits lamellar (smectic),
hexagonal (columnar) and occasionally ne-
matic liquid crystal phases, and in the phase
diagram these are often separated by or
bounded by narrow regions of cubic phas-
es. The molecular organization in lyotrop-
ics represents an extreme example of am-
phiphilic liquid crystal phases in which the
spatial separation of molecular subunits is
stabilized by a second component, usually
water, to produce a partitioning of space into
polar and nonpolar regions. Inverse lyotrop-
ic phase structures can also be prepared
where the spatial separation of alkyl chains
is stabilized by a nonpolar solvent such as
hexane. Spatial organization of molecular
subunits can also occur in nonlyotropic lig-
uid crystals resulting in a variety of mod-
ulated phase structures, and the formation
of curved interfaces is of especial impor-
tance for biological membranes.

The macroscopic topology of lyotropic or
liquid crystal phases involving segregation
is determined by the curvature of the inter-
face; alamellar structure has zero curvature,
while micellar phases or hexagonal phases
exhibit interfacial curvature. An interface is
defined by the segregation of different
molecules or molecular subunits. Deforma-
tion of this interface may occur in a variety

of ways: tangential stress will cause a pla-
nar stretch, while molecular tilting will gen-
erate a stress normal to the interface. Both
have a high associated elastic energy, but
deformation through interfacial curvature
involves much lower elastic energies, and
so is the preferred mechanism through
which topological changes occur. The for-
mation of spherical micelles requires curva-
ture strain in three dimensions, and a direc-
tor defined along the normal to the interface
is no longer uniform within a plane or par-
allel to a plane. Bearing this in mind the cur-
vature elastic energy per unit area (w) can
be written as (c.f. Eq. (17)):

=5 k(“) (exx +ey,—Co )2

+ kéit) xy €yx

(exeyy —exey) (46)
where ¢; allows for equilibrium structures
having a non-zero splay. Since the deforma-
tion is confined to the interface and the di-
rector n remains everywhere normal to the
interface, there are no bend or twist contri-
butions to the elastic energy, and e, =e,,, =0.
The first term in Eq. (46) is clearly a splay
elastic energy, while the second term was
designated by Frank as a saddle-splay ener-
gy. From the definition of curvature strain
elements e, (Eq. 14), it can be seen that for
small strains:

_dn, _ 1
Cxx = dx h Rl
and
dn 1
Skt A O
ey, = & - R’ 47

where R; and R, are the radii of curvature
of the surface in the zx and zy planes respec-
tively (see Fig. 10), and ¢, is the spontane-
ous curvature of the surface in the absence
of strain. Thus the elastic free energy per
unit area can now be written in terms of the
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Figure 10. Princi-
pal radii of curva-
ture in a saddle-
splay distortion.

principal radii of curvature as:

2
Ly Ly 1) g L
) (Rl R 0] ky Rl (48)

with k2 and & defined as elastic constants

for the mean curvature %(Rl'l+ Rgl) and

gaussian curvature (RIRZ)_1 respectively.

Different types of surface can be catego-
rized in terms of their mean and gaussian
curvatures. For example, a sphere of radius
R has a mean curvature of R~ and a gaus-
sian curvature of R™2, while a cylinder has
one principal radius of curvature equal to in-
finity, so the gaussian curvature is zero. Sur-
faces with zero mean curvature such that
R7'=—R3! are known as minimal surfaces
and have been proposed as structures for
some cubic phases [19].

5.4 Electric and Magnetic
Field-induced Deformations

Competition between two competing elas-
tic torques results in a director distribution
that minimises the free energy. The origin
of the torque may be mechanical as repre-

sented in Fig. 7, or it may arise through a
coupling between an external field and the
corresponding susceptibility anisotropy.
For a uniaxial material the internal energy
density in the presence of a field (F) can be
written as:

U= ——I:)(+ 7‘(3sm 06— 1)} (49)

where (90-0°) is the angle between the
field and the director (see Fig. i1), and so
the torque is given by:

du

t=— "
de

=—A)Y(F-n)(Fxn) (50)

=—Ay F?cosfsin0

The torque is zero when the field is parallel
or perpendicular to the director, but depend-
ing on the sign of Ay, one of these states is
in stable equilibrium, while the other is in
unstable equilibrium. For positive Ay, in-
creasing a field perpendicular to n will raise
the energy and hence destabilize this state:
eventually the increase in energy due to the
field exceeds the elastic energy, and so the
liquid crystal adopts a new director config-
uration. Reorientation of the liquid crystal
does not necessarily occur as soon as the
field is applied (because the torque is zero),
and can be a threshold phenomenon occur-

90°8
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Figure 11. Director reorientation by a field.
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ring above a critical field strength. The mag-
nitude of the threshold field can be estimat-
ed as follows; if the director is deformed
over a distance /, the strain is of order /™',
and the elastic free energy density is k/I.
The angle-dependent contribution to the
free energy density from the fieldis =Ay F?,
and the threshold field for director reorien-
tation is when these energies become equal:

AyF? = l%
o
i Favsotd = A (51)

the length [ is typically of order of the sam-
ple thickness. This reorientation of the di-
rector by a field is known as a Fréedericksz
transition [20], and forms the basis of most
display applications of nematic liquid crys-
tals. If the director is not perpendicular (or
parallel) to the field because of misalign-
ment or surface tilt of the director, then there
is a torque for vanishingly small field
strengths, and deformation occurs without a
threshold.

5.4.1 Director Distribution
in Magnetic Fields

Before outlining the effect of fields on the
orientation of the director, it must be em-
phasized that surface interactions and boun-
dary conditions are usually of importance.
The models applied here assume that there
is a well-defined director distribution in
the absence of any external field, and in
practice this can only be provided by suit-
able treatment of boundary surfaces. The
strength of surface interactions must also be
considered as this will influence the equi-
librium director configuration in the pres-
ence of a field. For the simplest description
of field effects in liquid crystals it is usual
to assume an infinite anchoring energy for

the director at the surface: this is the strong
anchoring limit, but it is possible to include
finite surface coupling energies [21-24]. It
is found that there can still be a threshold
response to external fields, but the critical
field strength is reduced in comparison with
the strong anchoring limit.

It is easier to model the deformation in-
duced by magnetic fields than electric
fields, because for nonferromagnetic liquid
crystals the relative volume magnetic sus-
ceptibility anisotropy is very small (=107%)
in comparison with the corresponding di-
electric anisotropy (=10). This means that
the induced magnetization is always paral-
lel to the field direction, in contrast with
the electric polarization, which in general
makes some angle with the electric field.
The magnetic contribution to the free ener-
gy of a liquid crystal can be written as (see
Eq. 49):

gmagz-ﬁj(;a+A;(sin29)Bde (52)

where 90-8 is the angle between the direc-
tor and the magnetic field. Thus the total free
energy including any elastic deformation
becomes:

g=%Jk11(V-n)2+k22(n'V><n)2
+k33(n><V><n)2

— o' (XL B +Ax(n-B)*)dr®  (53)

and the equilibrium director distribution
n(r) is that which minimizes g. To proceed
further, it is necessary to specify the geom-
etry of the system more closely, and it is usu-
al to consider three standard configurations
(Fig. 12) where the applied field is perpen-
dicular to the director of a uniformly aligned
sample of positive susceptibility anisotropy.

These configurations define Fréedericksz
transitions from undeformed to deformed
states for which the threshold fields are sep-
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Figure 12. Field induced splay, twist and bend defor-
mations.

arately related to the elastic constants for
splay twist and bend. Only deformations for
which the director is uniform in a plane are
considered (so k, 4 is unimportant), and ap-
plying the Euler—Lagrange equations [25]
to minimize g (Eq. (53) gives the following
results for the three cases in Fig. 12.

(1) Splay:
2
. de
adz [{kl 1082 0 + ky 5 sin? 9} (dvz)
+ gt Ay B? sin? 0]= 0

(2) Twist:

o\
4 ks o d¢ +,u51Aszsin2¢ =0
dz dz

(3) Bend:

2
d 2 2 de
d—z[{k33cos 0 +k;; sin 9}[(12)

+ ' AxB?sin? 6] =0 (54)

where the deformation plane is defined by
the directions z —n. The case (1) will be con-
sidered in a little more detail [26], and re-
sults will be quoted for other boundary con-
ditions.

Eq. (54) implies that:

2
[kl 1 €08 0 + k3 3 sin? 9] (d@]
dz
+ ,ual A)(Bz sin? @ = constant C (55)

and this constant may be evaluated by rec-
ognizing that for the selected geometry, 6
will be a maximum at the mid-point of the
cell such that z=d/2. Setting this condition
in Eq. (55) gives that:

C = Uy Ay B, sin6,, (56)

Substitution in Eq. (55) and rearranging
now gives a differential equation for the
equilibrium director distribution in terms of
the angle 6, the field strength and the posi-
tion in the cell:

9 (u'ax )"

sin® @, —sin’ @
kl 1 C()S2 0+ k33 sin2 0

12
} (57)

or in integral form:

am y 2
J [ 1+k’sin“ @
0

1/2
do
sin’ 8, —sin? 9]

d/2 1 1/2
_ J(ﬂo Ax] Bdz (58)
0 11

where a reduced elastic constant k'=
(k33—k;1)/k; | has been introduced. Itis now
convenient to change the variable 8 to y
using:

sin@ =sinf,, siny, and

2
de _ sinzem—sin29 Y
dy 1—-sin’@
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so that when 6=6,, y=n/2 and z=d/2,
hence Eq. (58) becomes:

172
n'/[Z 1+k’sin’ 6, sin? dy
0 1—sin? 0, sin’

d/2 lA 1/2
= [ [£0 8% By, (59)
0 kll

The right hand side of Eq. (59) is simply

172
(“01” j , but the left hand side is
2\ Ky

an elliptic integral of the third kind and must
be evaluated numerically. At the threshold
6,,=0, the left hand side reduces to ©/2 giv-
ing the result for the Fréedericksz threshold
magnetic field (B,) as:

K 1/2

Bc—"( o j (60)
Ho Ax

for fields above threshold:

B,

n/2 ) .o Tl2
B :% J {l+k sin 9m§1121 u/} dy (61)
0

1-sin’ @, sin’y

The director distribution through the sam-
ple may be obtained for a particular value
of B/B_ by finding 6,, from Eq. (61), and the
value of 6(z) at position z within the sam-
ple is obtained (Eq. 58) from:

] 2
T 14+&’sin’0
[ =3 ) de
p L sin” 8, —sin” 0

lulAZ 1/2 B
=zB| H0 =2rL 62
w [ o J dB, ©

Results for 8(z) at various values of Bﬁ are
C

plotted in Fig. 13 for an assumed value of
k’=1, corresponding to k33=2k;,.

Similar derivations can be applied to the
other geometries illustrated in Fig. 12 with
the results:

B so

(2) Twist:
/2 172
B _2
— == d
B = £[ 1-sin (Z)msm l//} v
i 1/2
and BCZZ(,uOlzzx] (63)

where the right hand side is an elliptic inte-
gral of the first kind.

The result for a bend deformation is the
same as that given for splay, except the elas-
tic constants k,; and k53 are interchanged;
thus the threshold field is given by:

n k33 2
= 5 (64)
o Ay

In the above treatment, splay and bend de-
formations can be regarded as limiting
cases of the effect of a field on a uniformly
tilted structure with a zero-field tilt 8,=0°
(splay) and 6,=90° (bend). For cell config-
urations with a uniform tilt between 0° and
90°, there will still be a threshold response
provided that the field is perpendicular or
parallel (depending on the susceptibility an-
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Figure 13. Director distribution above threshold.
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isotropy) to the initial alignment direction;
the corresponding threshold field is [24]:

K 1/2
p==I L[4 & sin?

= {,UOIAZ [ sin 90] (65)
For the twisted (TN) geometry widely en-
countered in displays, the director distribu-
tion in three dimensions has to be evaluat-
ed in terms of both 6(z) and ¢ (z). This has
been done [27] and the corresponding
threshold field is:

B.= (66)

T

d
172

.{#EIIAZ ':k11+(k33 —Zkzz)(%) }}

where @, is the zero-field twist angle. In
these simple derivations the condition of
strong anchoring has been assumed; how-
ever effects of weak anchoring where a sur-
face interaction term is included have been
examined [24].

5.4.2 Director Distribution
in Electric Fields

The complication associated with electric
fields is due to the large anisotropy of the
electric permittivity, which means that
above threshold the induced electric pola-
rization is no longer parallel to the applied
field. In a deformed sample the director or-
ientation is inhomogeneous through the cell,
and as a consequence the electric field is al-
so nonuniform. An additional problem can
arise with conducting samples, for which
there is a contribution to the electric torque
from the conductivity anisotropy. Neglect-
ing this, the expressions for threshold elec-
tric fields are similar to those obtained for
magnetic fields:

(1) Splay

" Ky V2
¢ d SoAS

(2) Twist
L _m ks 1/2
=T
d &y Ag
(3) Bend

k 1/2
g T k3
T4 (SOAS) (67)

and the corresponding threshold voltages
are independent of sample thickness.

In order to calculate the electric response
above threshold, it is necessary to start from
the free energy:

g=%jkll(v-n)2+k22(n~V><n)2 (68)
+ ky3(nxV xn):—gyD-E dr?

=%Jk11(7-n)2+k22(n-7><n)2
+hy3(nxV xn)?

- &o(eL E? +Ag(n- E)?)dr?

In the absence of charge V- D =0, so that D,
is constant; by symmetry E will only have a
component along the z-direction, but its
magnitude will be a function of z. Consid-
ering for a moment just the electric field
contribution to the energy per unit area, this
can be written as:

Zelec /area = —% D, fEZ dz

= —% D.v (69)
where the voltage Vis just the integral of the
field. The electric displacement D, =¢&y¢, E,

so from Eq. (69), D, can be written as

D.=V/|(goe..) ' dz
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For an initially planar cell (case (1) above),
£,.=¢), sin® @+ €, cos® 6, so the free energy
per unit area becomes:

Zelec/area ) (70)
. d
= % | (k“ cos? 0 + k3 3 sin? 9) (Tg) dz

-1 7
- %80 v? [I (eu sin? @ + €, cos? 9) dz}
Applying variational calculus to this ex-
pression for the free energy gives an inte-
gral equation (c.f. Eq. (58) for the director
distribution:

%:%(l+ysin20m)”2 (71)
/2

_"j“ 14k’ sin0 "o

o L1+ sin?8) (sin? G, ~sin’ )

where y=Ag/g,, with a similar expression
for the bend deformation (case (3) above),
except that £, and €, and &, and k;4 are
interchanged: the case (2) for a twisted def-
ormation is more complicated [26]. This
treatment has neglected any coupling
between elastic deformation and electric po-
larization, but such flexoelectricity can con-
tribute to Fréedericksz transitions [28].

5.4.3 Fréedericksz Transitions
as a Method for Measuring
Elastic Constants

As well as providing the basis for electro-
optic displays, the Fréedericksz transitions

k11C082 6+k33Sil’l2 0

can be used to determine the elastic con-
stants of liquid crystals. Any physical tech-
nique that is sensitive to a change in the
director distribution can be used to obtain
elastic constants, but the most common
methods rely on measurement of capaci-
tance or birefringence changes during a
Fréedericksz transition. As before the sim-
plest configuration to consider is the planar
to homeotropic transition observed in mate-
rials having a positive electric or magnetic
susceptibility anisotropy.

5.4.3.1 Capacitance Method

For a particular applied field, the measured
capacitance of a sample will be an integral
over the permittivity component g,, across
the cell. If the cell is imagined as a series of
thin slices each of which acts as a parallel
plate capacitor, the addition theorem for
series capacitors gives the cell capacitance
C as:

—1 z_[ dZ
EOASZZ(Z)
dr2

_ 2 . 2 ]
= Ame g(l+ysm 9) dz (72)

It is convenient to change the variable z in
Eq. (72) to one involving the director defor-
mation 6, and for a magnetic field-induced
Fréedericksz transition, Eq. (57) can be

used for (d—ej to give:
dz

AggE| { |i

_ 2B, ”"‘[

_ f 1+k’sin” @
TCCOB 0

sin% @, —sin’ 6

sin® 6, —sin* @

1/2
} (1+7sin26) " a6

1/2 i
} (147 sin? 6) do (73)
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where :m
d
result is:
ej‘“  1+K'sin%8 “2d9
Co_ 0 (1+7 sin”@)(sin*6,, —sin’ §)

¢ gj“[(lﬂlsin20)(1+k’sin29)}1/2d0

) )
0 sin“ 6@, —sin“ 6

5.4.3.2 Birefringence Method

This technique usually measures the change
in birefringence as a cell is switched from
planar to homeotropic with an electric or
magnetic field. Initially the birefringence is
(n,—ng), which at infinite field becomes ze-
ro. The change (A) in the birefringence can
be written as:

(ne - nO) - (neff - nO) = (ne - neff) =A (75)

where n is the effective refractive index
along the field direction, and is given by:
d

Hege = 5 [ n(z)dz (76)

0

n(z) depends on the director orientation, and
can be obtained from Eq. (4) of Sec. 3 of this
chapter, but note that the angle 6 used in
the earlier equation is (90°— ) used here.
Thus  n(z) =n,ny(n?sin’*@ + ng cos’ )™/
=n,(1+vsin®0)2, and v=nZ-nd)/nd,
and the birefringence change A can be ob-
tained by transforming Eq. (76) to an inte-
gral over 0 using Eq. (57), so that:

(s 131 ) (77)

A=n,

) 1/2

ej-“ k]] c0526+k33sin26 460
o | A +vsin?6)(sin® 8, —sin?B)

and using the result for the threshold field,
this becomes:

is the zero-field capacitance. For excitation by an electric field the

(74)
A__2B
ne—l 5 (78)
O , .2 172
J- - 1+k’sin“ 6 do
o | (1+vsin® @) (sin® 8, —sin’ H)

It will be useful to express this in terms of
the new angular variable y introduced ear-
lier, to give:

A_,_2B
e nBb

172
' E}Z 1+ k’sin? 6, sin” v
o | 1+vsin? @, sin’ 6

(1-sin’ G, sin’y) do (79)

The usual way to observe birefringence
changes in a nematic slab undergoing a
Fréedericksz transition is to illuminate the
sample with polarized light, the plane of
which makes an angle of 45° with the direc-
tor axis. Increasing the field above thresh-
old and measuring the intensity transmitted
through a crossed polariser gives rise to a
series of maxima and minima (fringes).
These can be related to the expression (79)
by the result:

I () age2mda
10_4(1 cos( 1 )j (80)

where the ratio //1 refers to changes in the
intensity of unpolarized incident light (/).
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The result for electric field excitation is more complex for the reasons given earlier, but

has a similar form to Eq. (79)

2 _(1 + k'sin2 Gm sin2 l//) (1 + '}/Sinz em Sir12 lI/)Tl/2de
A _ g | (1 +Vsin® Oy, sin’ 0) (1 —sin” O sin® 0) ~i/2 @b
e nJ/_z (1 +K'sin26,, sin2 l//) (1 + ysin2 6, sin? l//) 46
0 1—sin’ 6, sin* 6
m .

Numerical methods have been developed
[29-31] to fit experimental values of
Coor ;;A_ to the theoretical expressions with
0 e

B, k', v, V. and y as adjustable parameters
appropriate to the particular experiment be-
ing considered. Another way of using these
expressions is to develop low-field or high-
field expansions, so that material parame-
ters can be obtained directly from a linear
or polynomial expression. For example the
low and high field expansions for electric
field excitation have been derived [32, 33]
as:

c-coj , V=V
—= =2y(1+k" +7) (——C)
( CO E—0 VC

C—Co) -1 172 Ve

— =y=-2yn  (1+y)'" =

( G o Y2y Y v
(82)

Care is required in using these expressions,
since they are usually only valid close to the
limiting field values where measurements
are difficult and liable to error.

In this section the effects of magnetic and
electric fields have been considered for a
few standard geometries for materials hav-
ing positive susceptibility anisotropies, but
there are many possible variations with neg-
ative anisotropies or simultaneous excita-
tion with both electric and magnetic fields
of materials having both positive, both neg-
ative or different signs of electric and mag-
netic susceptibility anisotropies. Another

variation which may be introduced is to have
different boundary conditions for the con-
taining surfaces of the liquid crystal film
[34], so-called hybrid-aligned cells. The
theoretical treatment outlined here has ex-
cluded the possibility of defect formation,
although this can in principle be described
by the elasticity theory already developed.
Defect structures can be formed as a result
of deformation by electric or magnetic
fields. In some situations they may arise
from natural degeneracies in the sample: for
example in a twist cell, states of opposite
twist will be of equal energy, and so may
form distinct regions separated by a discli-
nation. In real device cells the structures are
designed to avoid the formation of defects.

5.4.4 Fréedericksz Transition
for Chiral Nematics

Field effects on chiral nematics can be inter-
preted by adding a pitch term to the free
energy, so it might be expected that the
Fréedericksz transitions observed for chiral
nematics will be similar to those described
above for achiral nematics. In reality this is
not the case because the helical structure in
chiral phases prevents the formation of uni-
formly aligned films, and so defects and de-
fect-modulated structures are unavoidable
in many field-induced orientational changes.
The effects of external fields on chiral ne-
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matic films have been described [35, 36],
and some of the associated phenomena form
the basis for display devices. In most cases
a theoretical description of the induced def-
ormation is only possible by numerical so-
lution of the Euler — Lagrange equations, but
one simple effect that has an analytical so-
lution is the so-called field-induced choles-
teric to nematic phase transition. An exter-
nal field applied perpendicular to the helix
axis of a material having a positive suscep-
tibility anisotropy will cause the helix to
unwind and the pitch to increase. A treat-
ment similar to that given for the twist
Fréedericksz transition shows that the crit-
ical field for divergence of the pitch to in-
finity is:

A 1/2
nqy 22

F="10 83
2 [Axuéj ®)

This results contrasts with the threshold
field for a nematic Fréedericksz transition,
which is thickness dependent: also F_ marks
the end of the deformation rather than the
beginning which defines the normal thresh-
old fields.

5.4.5 Fréedericksz Transitions
for Smectic Phases

The simplest elasticity theory for SmA
phases includes two elastic contants, one
for splay and one for layer compressibility.
It might therefore be expected that a
Fréedericksz transition for splay deforma-
tion should be observed corresponding to an
initial deformation of layers in a planar to
homeotropic transition. This is not ob-
served, and field induced deformations in
smectic A phases are accompanied by de-
fect formation. The Helfrich—Hurault
mechanism for the homeotropic to planar
transition via the formation of undulations

predicts a threshold field which is inverse-
ly proportional to the square-root of the
sample thickness [37] e.g. for a magnetic
field:

1/2
27[](11 ] (84)

Cz(Aquld

where d is the cell thickness and A=
\J‘WB (see Fig. 14).

External field distortions in SmC and chi-
ral SmC phases have been investigated [38],
but the large number of elastic terms in the
free-energy, and the coupling between the
permanent polarization and electric fields
for chiral phases considerably complicates
the description. In the chiral smectic C
phase a simple helix unwinding Fréede-
ricksz transition can be detected for the ¢
director. This is similar to the chiral nemat-
ic—nematic transition described by Eq. (83),
and the result is identical for the SmC*
phase. Indeed it appears that at least in inter-
actions with magnetic fields in the plane of
the layers, SmC and SmC* phases behave
as two dimensional nematics [39].

Figure 14. Helfrich~Hurault mechanism for field
deformation of smectic layers.
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5.5 Molecular Aspects
of Torsional Elasticity

5.5.1 van der Waals Theory

Torsional elasticity is of special interest
from a microscopic viewpoint since it is a
property characteristic of liquid crystals,
which distinguishes them from ordinary
liquids. The elastic properties contribute
to many physical phenomena observed for
liquid crystals, and a molecular theory of
torsional elasticity should enable the iden-
tification of particular molecular properties
responsible for many aspects of liquid crys-
talline behavior.

The principal elastic constants for a ne-
matic liquid crystal have already been de-
fined in Sec. 5.1 as splay (k, ;), twist (k;,)
and bend (k54). In this section we shall out-
line the statistical theory of elastic con-
stants, and show how they depend on mo-
lecular properties. The approach follows
that of the generalised van der Waals theo-
ry developed by Gelbart and Ben-Shaul
[40], which itself embraces a number of ear-
lier models for the elasticity of nematic lig-
uid crystals. Corresponding theories for
smectic, columnar and biaxial phases have
yet to be developed.

Elastic constants are defined in terms of
the deformation free energy of a liquid crys-
tal subjected to torsional strain. Statistical
models for liquid crystals result in equations
for the free energy in an undistorted state:
thus to calculate elastic constants it is nec-
essary to obtain a statistical expression for
the free energy of a strained liquid crystal.
In developing a statistical theory it is easi-
er to use the Helmholtz free energy to cal-
culate elastic constants, although Frank
originally defined them in terms of the
Gibbs free energy, corresponding to strain
at constant external pressure. We shall be

considering torsional strain at constant vol-
ume, for which changes in both the internal
energy and entropy of a liquid crystal will
contribute to the elastic constants.

The most widely used statistical model
for fluids is that due to van der Waals, which
includes a mean attractive potential with a
hard particle excluded volume. For such a
model the Helmholtz free energy can be
written as [41, 42]:

Alf(2),2,, R, Ry)) (85)

= A[f(2, 2 R, Ry)]

—%szf(gl,Rl)f(-Qz,Rz)
‘M12(R12,Q1,92)
“ &hp (R12, Ql’gz)dgl’ d€2,,dR,dR,

where f(£2,, R|) is a single particle distri-
bution function for molecule 1, u,,(R,,,
£,, £2,) is the attractive part of the pair po-
tential and gy, (R, £2;, £2,) is the pair dis-
tribution function for the hard particle inter-
actions in the isotropic state.

To proceed we need to know how the
functional A [ f(£2,, £2,, R,, R,)] varies when
the equilibrium state of the liquid crystal is
elastically distorted. A macroscopic strain
will not influence u , or gy, since these are
dependent only on molecular parameters of
the model: the free energy changes because
the single particle distribution functions
change. We assume that for the small dis-
tortions described by the Frank elastic con-
stants, the single particle orientational dis-
tribution function, defined with respect to a
local director axis, is also independent of
strain i. e. elastic torques do not change the
molecular order parameters. The product of
distribution functions f(£2,, R,) f(£2,, R,)
will change with strain because the director
orientations at R; and R, will differ, and the
evaluation of the strain dependence of the
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Helmbholtz free energy has reduced to deter-
mining the strain derivatives of the single
particle distribution functions. Both the
terms in Eq. (85) will contribute to the elas-
tic free energy, but the first term, which de-
scribes hard particle contributions to the
Helmholtz free energy will only appear in
the entropy of the system, since the internal
energy of a hard particle fluid is zero. Fur-
thermore it can be shown [40] that the rota-
tional hard particle entropy is independent
of strain, provided that the single particle
orientational distribution defined with re-
spect to the local director does not depend
on strain. Thus the hard particle repulsion
contributes to the elastic strain energy in two
ways: firstly through the orientation-depen-
dent excluded volume, which affects the
transitional entropy, and secondly because
the integration over the pair attractive po-
tential energy is convoluted with the hard
particle distribution function. A particular-
ly convenient form for the hard particle
translational entropy is provided by the ‘y-
expansion’ [41], and using this the Helm-
holtz free energy becomes:

Alf(21.2.R.R,)] (86)
_rqui_ kTP’

[f(2,R)f(2,.Ry)

: { g - 1}d91, d9,.dR,,dR,

_%pzjf(gl»Rl)f(Q2’R2)

Ry, 21,228l 42y, 482, ARy, AR,
=-TSfy - 1p’

SR, R)f(2. R+ Ryy)

fuslme )~ 41 (91

'dgl, dgz, de, dR12

where g(h(gz exp—uny/kg T is the pair corre-

lation function for the hard particles, v, is
the particle volume, uy, is the hard particle
potential, and S, is the hard particle rota-
tional entropy. In order to obtain the elastic-
distortion-free energy from Eq. (86), we as-
sume that molecule 1 is located at some ar-
bitary origin in the fluid. The orientational
distribution function for molecule 2 at po-
sition R, only depends on the orientation
of the director at R, with respect to the di-
rector at the origin. Thus in the undeformed
state the director at R, is parallel to that at
the origin (at least for non-chiral liquid crys-
tals), but in the deformed state the director
at R;, makes an angle of 8(R,,) to that at
the origin; see Fig. 15.

The distortion free energy density is then
the difference in free energies given by
Eq. (86) between the distorted and undis-
torted states, that is:

&ﬁstorted _1 2 87
% —zpff(gl,o) ®7)

{r(2..6(R2))- £(2,0)}

kT
' {Lﬁ 2(Ri2. 2,92 gty - m(gk(lg) - 1)}
: dgh dQZa dR] 2

The change in the single particle orienta-
tional distribution function for small defor-

Figure 15. Molecular distributions in a deformed ne-
matic liquid crystal.
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mations can be obtained from a Taylor ex-
pansion, such that:

f(£2,0(R)) - f(£2,0)

:(df(Q,O(R))j o
e 0

1(df(26R)) 5 28
+2[ 102 ]00 +... (88)

The way in which 8(R) varies with position
depends on the form of the torsional defor-
mation applied to the liquid crystal, and in
order to calculate the principal elastic con-
stants, it makes sense to calculate the free
energy density for ‘normal mode’ deforma-
tions, i. e. those which correspond to splay,
twist and bend. These can be achieved eas-
ily by confining the director to a plane, and
assuming the undisturbed director at the or-
igin to be along the z-axis. g is the wave-
vector of the deformation, and for ¢ con-
strained to the x, z plane, the components of
the director as a function of position be-
come:

n,=sing-R; n,=0; n,=cosq-R

Director configurations corresponding to
pure splay, twist and bend are illustrated in
Fig. 16 and to the lowest order of approxi-
mation can be described in terms of long

4

bend

X

Figure 16. Deformations of director for splay, twist,
bend.

wavelength deformations parallel to the x-
axis for splay, parallel to the y-axis for twist
and parallel to the z-axis for bend. Under
these circumstances, the angle between the
director at the origin and that at position R
becomes:

gx splay
B(R)=1{qgy twist (89)
gz bend

Gelbart and Ben Shaul have shown that a
more consistent director distribution giving
rise to normal mode elastic deformations is:

qx(1+4q2)™" splay
tan@(R)=<qy twist
gz(1—gx)™" bend

qx(1—gz) splay
or B(R)=<qy twist (90)
qz(1+gx) bend

Substituting these results into Eq. (88)
gives:

f(82,6(R)— f(£2,0)

=(df(!2,9(R))) (04 x)

2 q’x
1(d°f(£2,6(R)) 2
+ 5 (—dez ] 2y 1)

The macroscopic expression for the elastic
free energy density (Eq. 25) is:

8- 8o =$Ik11(v'n)2+k22(n~Vxn)2
+k33((n-Vyn)’dR (92)

Using the expressions for O(R) correspond-
ing to pure splay, twist and bend deforma-
tions gives the result:
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%kl I 612 splay

g—g0 = %knqz twist (93)

%k3 3q° bend

Combining Eqs. (91) and (87) and equating
the result for the free energy density to the
macroscopic expression Eq. (93) gives:

ki

kaop=p*[f(£2.0)

k33
—xz
, (df(Ql,G(R))) 0
a6 O | +zx

2

2 X

L[ P@.0R)) |,
5 y

2 de 0|22

kT
'[”12 (Rl2’Ql’QZ)g}?p_m(ggP_l)}
-d€2,,d€2,,dR,, (94)

The two terms in the square brackets of
Eq. (94) can be identified as a temperature
independent internal energy term, and a
temperature dependent entropy term result-
ing from the hard particle pair distribution
function. From this equation it can be seen
that the calculation of the principal elastic
constants of a nematic liquid crystal de-
pends on the first and second derivatives
with respect to the angle @ of the single par-
ticle orientational distribution function.
Any appropriate angular function may be
used for f(£2;, 8(R)), but the usual approach
is to use an expansion in terms of spherical
harmonics. The necessary mathematical
manipulations are complicated, but give
relatively compact results. Thus the ingre-
dients of a molecular calculation of torsion-
al elastic constants within the van der Waals

theory, are a single particle angular distri-
bution function, an attractive intermolecu-
lar potential and a hard particle pair distri-
bution function. An immediate result of the
above theory is that since the elastic con-
stants depend on the product of single par-
ticle orientational distribution functions,
they will depend on the product of order pa-
rameters.

5.5.2 Results from
Lattice Models

For the simplest distribution function, only
the term involving the second derivative in
Eq. (94) is nonzero, and the torsional elas-
tic constants are given by an average over
the square of the intermolecular distances x,
yand z. Since macroscopic uniaxiality is as-
sumed, the averages over x and y, perpen-
dicular to the undisturbed director, will be
equal, with the result [43]:

ky, =k, = constant p>S*b{(x*) and
k5 = constant p*S2b(z%) (95)

where b is an energy parameter. If a lattice
model is assumed, then the averages over x
and z will relate to the unit cell dimensions,
or the dimensions of an ‘interaction vol-
ume’. The result, Eq. (95), fails to account
for the observed difference